Conserved and divergent processing of neuroligin and neurexin genes: from the nematode C. elegans to human
详细信息    查看全文
  • 作者:Fernando Calahorro
  • 关键词:Neuroligin ; Neurexin ; Alternative splicing ; Autism ; C. elegans
  • 刊名:Invertebrate Neuroscience
  • 出版年:2014
  • 出版时间:September 2014
  • 年:2014
  • 卷:14
  • 期:2
  • 页码:79-90
  • 全文大小:2,144 KB
  • 参考文献:1. Aoto J, Martinelli DC, Malenka RC, Tabuchi K, Sudhof TC (2013) Presynaptic Neurexin-3 Alternative Splicing trans-Synaptically Controls Postsynaptic AMPA Receptor Trafficking. Cell 154(1):75-8 CrossRef
    2. Bang ML, Owczarek S (2013) A matter of balance: role of neurexin and neuroligin at the synapse. Neurochem Res 38(6):1174-189 CrossRef
    3. Banovic D, Khorramshahi O, Owald D, Wichmann C, Riedt T, Fouquet W et al (2010) Drosophila neuroligin 1 promotes growth and postsynaptic differentiation at glutamatergic neuromuscular junctions. Neuron 66(5):724-38 CrossRef
    4. Baudouin S, Scheiffele P (2010) SnapShot: neuroligin-neurexin complexes. Cell 141(5):908-08e1 CrossRef
    5. Baudouin SJ, Gaudias J, Gerharz S, Hatstatt L, Zhou K, Punnakkal P et al (2012) Shared synaptic pathophysiology in syndromic and nonsyndromic rodent models of autism. Science 338(6103):128-32 CrossRef
    6. Baumgartner S, Littleton JT, Broadie K, Bhat MA, Harbecke R, Lengyel JA et al (1996) A Drosophila neurexin is required for septate junction and blood-nerve barrier formation and function. Cell 87(6):1059-068 CrossRef
    7. Bemben MA, Shipman SL, Hirai T, Herring BE, Li Y, Badger JD 2nd et al (2014) CaMKII phosphorylation of neuroligin-1 regulates excitatory synapses. Nat Neurosci 17(1):56-4 CrossRef
    8. Bolliger MF, Frei K, Winterhalter KH, Gloor SM (2001) Identification of a novel neuroligin in humans which binds to PSD-95 and has a widespread expression. Biochem J 356(Pt 2):581-88 CrossRef
    9. Boucard AA, Chubykin AA, Comoletti D, Taylor P, Sudhof TC (2005) A splice code for trans-synaptic cell adhesion mediated by binding of neuroligin 1 to alpha- and beta-neurexins. Neuron 48(2):229-36 CrossRef
    10. Boucard AA, Maxeiner S, Sudhof TC (2013) Latrophilins function as heterophilic cell-adhesion molecules by binding to teneurins: regulation by alternative splicing. J Biol Chem 2891(1):387-02
    11. Budreck EC, Scheiffele P (2007) Neuroligin-3 is a neuronal adhesion protein at GABAergic and glutamatergic synapses. Eur J Neurosci 26(7):1738-748 CrossRef
    12. Calahorro F, Ruiz-Rubio M (2012) Functional phenotypic rescue of Caenorhabditis elegans neuroligin-deficient mutants by the human and rat NLGN1 genes. PLoS ONE 7(6):e39277 CrossRef
    13. Calahorro F, Ruiz-Rubio M (2013) Human alpha- and beta-NRXN1 isoforms rescue behavioral impairments of Caenorhabditis elegans neurexin-deficient mutants. Genes Brain Behav 12(4):453-64 CrossRef
    14. Chih B, Engelman H, Scheiffele P (2005) Control of excitatory and inhibitory synapse formation by neuroligins. Science 307(5713):1324-328 CrossRef
    15. Chih B, Gollan L, Scheiffele P (2006) Alternative splicing controls selective trans-synaptic interactions of the neuroligin-neurexin complex. Neuron 51(2):171-78 CrossRef
    16. Chubykin AA, Atasoy D, Etherton MR, Brose N, Kavalali ET, Gibson JR et al (2007) Activity-dependent validation of excitatory versus inhibitory synapses by neuroligin-1 versus neuroligin-2. Neuron 54(6):919-31 CrossRef
    17. Comoletti D, Flynn R, Jennings LL, Chubykin A, Matsumura T, Hasegawa H et al (2003) Characterization of the interaction of a recombinant soluble neuroligin-1 with neurexin-1beta. J Biol Chem 278(50):50497-0505 CrossRef
    18. Comoletti D, Flynn RE, Boucard AA, Demeler B, Schirf V, Shi J et al (2006) Gene selection, alternative splicing, and post-translational processing regulate neuroligin selectivity for beta-neurexins. Biochemistry 45(42):12816-2827 CrossRef
    19. Crane MM, Stirman JN, Ou CY, Kurshan PT, Rehg JM, Shen K et al (2012) Autonomous screening of / C. elegans identifies genes implicated in synaptogenesis. Nat Methods 9(10):977-80 CrossRef
    20. de Wit J, Sylwestrak E, O’Sullivan ML, Otto S, Tiglio K, Savas JN et al (2009) LRRTM2 interacts with Neurexin1 and regulates excitatory synapse formation. Neuron 64(6):799-06 CrossRef
    21. Dudanova I, Sedej S, Ahmad M, Masius H, Sargsyan V, Zhang W et al (2006) Important contribution of alpha-neurexins to Ca2?+?-triggered exocytosis of secretory granules. J Neurosci 26(41):10599-0613 CrossRef
    22. El Bejjani R, Hammarlund M (2012) Notch signaling inhibits axon regeneration. Neuron 73(2):268-78 CrossRef
    23. Etherton MR, Blaiss CA, Powell CM, Sudhof TC (2009) Mouse neurexin-1alpha deletion causes correlated electrophysiological and behavioral changes consistent with cognitive impairments. Proc Natl Acad Sci U S A 106(42):17998-8003 CrossRef
    24. Etherton M, Foldy C, Sharma M, Tabuchi K, Liu X, Shamloo M et al (2011) Autism-linked neuroligin-3 R451C mutation differentially alters hippocampal and cortical synaptic function. Proc Natl Acad Sci U S A 108(33):13764-3769 CrossRef
    25. Fabrichny IP, Leone P, Sulzenbacher G, Comoletti D, Miller MT, Taylor P et al (2007) Structural analysis of the synaptic protein neuroligin and its beta-neurexin complex: determinants for folding and cell adhesion. Neuron 56(6):979-91 CrossRef
    26. Foldy C, Malenka RC, Sudhof TC (2013) Autism-associated neuroligin-3 mutations commonly disrupt tonic endocannabinoid signaling. Neuron 78(3):498-09 CrossRef
    27. Fortini ME (2009) Notch signaling: the core pathway and its posttranslational regulation. Dev Cell 16(5):633-47 CrossRef
    28. Gauthier J, Siddiqui TJ, Huashan P, Yokomaku D, Hamdan FF, Champagne N et al (2011) Truncating mutations in NRXN2 and NRXN1 in autism spectrum disorders and schizophrenia. Hum Genet 130(4):563-73 CrossRef
    29. Gibson JR, Huber KM, Sudhof TC (2009) Neuroligin-2 deletion selectively decreases inhibitory synaptic transmission originating from fast-spiking but not from somatostatin-positive interneurons. J Neurosci 29(44):13883-3897 CrossRef
    30. Gkogkas CG, Khoutorsky A, Ran I, Rampakakis E, Nevarko T, Weatherill DB et al (2013) Autism-related deficits via dysregulated eIF4E-dependent translational control. Nature 493(7432):371-77 CrossRef
    31. Graf ER, Kang Y, Hauner AM, Craig AM (2006) Structure function and splice site analysis of the synaptogenic activity of the neurexin-1 beta LNS domain. J Neurosci 26(16):4256-265 CrossRef
    32. Grayton HM, Missler M, Collier DA, Fernandes C (2013) Altered social behaviours in neurexin 1alpha knockout mice resemble core symptoms in neurodevelopmental disorders. PLoS ONE 8(6):e67114 CrossRef
    33. Haklai-Topper L, Soutschek J, Sabanay H, Scheel J, Hobert O, Peles E (2011) The neurexin superfamily of Caenorhabditis elegans. Gene Expr Patterns 11(1-):144-50 CrossRef
    34. Hoon M, Bauer G, Fritschy JM, Moser T, Falkenburger BH, Varoqueaux F (2009) Neuroligin 2 controls the maturation of GABAergic synapses and information processing in the retina. J Neurosci 29(25):8039-050 CrossRef
    35. Hoon M, Soykan T, Falkenburger B, Hammer M, Patrizi A, Schmidt KF et al (2011) Neuroligin-4 is localized to glycinergic postsynapses and regulates inhibition in the retina. Proc Natl Acad Sci U S A 108(7):3053-058 CrossRef
    36. Hunter JW, Mullen GP, McManus JR, Heatherly JM, Duke A, Rand JB (2010) Neuroligin-deficient mutants of / C. elegans have sensory processing deficits and are hypersensitive to oxidative stress and mercury toxicity. Dis Model Mech 3(5-):366-76 CrossRef
    37. Ichtchenko K, Hata Y, Nguyen T, Ullrich B, Missler M, Moomaw C et al (1995) Neuroligin 1: a splice site-specific ligand for beta-neurexins. Cell 81(3):435-43 CrossRef
    38. Ichtchenko K, Nguyen T, Sudhof TC (1996) Structures, alternative splicing, and neurexin binding of multiple neuroligins. J Biol Chem 271(5):2676-682 CrossRef
    39. Iijima T, Wu K, Witte H, Hanno-Iijima Y, Glatter T, Richard S et al (2011) SAM68 regulates neuronal activity-dependent alternative splicing of neurexin-1. Cell 147(7):1601-614 CrossRef
    40. Izquierdo PG, Calahorro F, Ruiz-Rubio M (2013) Neuroligin modulates the locomotory dopaminergic and serotonergic neuronal pathways of / C. elegans. Neurogenetics 14(3-):233-42 CrossRef
    41. Jamain S, Quach H, Betancur C, Rastam M, Colineaux C, Gillberg IC et al (2003) Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat Genet 34(1):27-9 CrossRef
    42. Kattenstroth G, Tantalaki E, Sudhof TC, Gottmann K, Missler M (2004) Postsynaptic N-methyl-D-aspartate receptor function requires alpha-neurexins. Proc Natl Acad Sci U S A 101(8):2607-612 CrossRef
    43. Knight D, Xie W, Boulianne GL (2011) Neurexins and neuroligins: recent insights from invertebrates. Mol Neurobiol 44(3):426-40 CrossRef
    44. Koehnke J, Jin X, Budreck EC, Posy S, Scheiffele P, Honig B et al (2008) Crystal structure of the extracellular cholinesterase-like domain from neuroligin-2. Proc Natl Acad Sci U S A 105(6):1873-878 CrossRef
    45. Koehnke J, Katsamba PS, Ahlsen G, Bahna F, Vendome J, Honig B et al (2010) Splice form dependence of beta-neurexin/neuroligin binding interactions. Neuron 67(1):61-4 CrossRef
    46. Li J, Ashley J, Budnik V, Bhat MA (2007a) Crucial role of Drosophila neurexin in proper active zone apposition to postsynaptic densities, synaptic growth, and synaptic transmission. Neuron 55(5):741-55 CrossRef
    47. Li Q, Lee JA, Black DL (2007b) Neuronal regulation of alternative pre-mRNA splicing. Nat Rev Neurosci 8(11):819-31 CrossRef
    48. Maeder CI, San-Miguel A, Wu EY, Lu H, Shen K (2014) In vivo neuron-wide analysis of synaptic vesicle precursor trafficking. Traffic 15(3):273-91 CrossRef
    49. Margeta MA, Shen K, Grill B (2008) Building a synapse: lessons on synaptic specificity and presynaptic assembly from the nematode / C. elegans. Curr Opin Neurobiol 18(1):69-6 CrossRef
    50. Matsuda K, Yuzaki M (2011) Cbln family proteins promote synapse formation by regulating distinct neurexin signaling pathways in various brain regions. Eur J Neurosci 33(8):1447-461 CrossRef
    51. Missler M, Sudhof TC (1998) Neurexins: three genes and 1001 products. Trends Genet 14(1):20-6 CrossRef
    52. Missler M, Fernandez-Chacon R, Sudhof TC (1998) The making of neurexins. J Neurochem 71(4):1339-347 CrossRef
    53. Missler M, Zhang W, Rohlmann A, Kattenstroth G, Hammer RE, Gottmann K et al (2003) Alpha-neurexins couple Ca2?+?channels to synaptic vesicle exocytosis. Nature 423(6943):939-48 CrossRef
    54. Peixoto RT, Kunz PA, Kwon H, Mabb AM, Sabatini BL, Philpot BD et al (2012) Transsynaptic signaling by activity-dependent cleavage of neuroligin-1. Neuron 76(2):396-09 CrossRef
    55. Poulopoulos A, Aramuni G, Meyer G, Soykan T, Hoon M, Papadopoulos T et al (2009) Neuroligin 2 drives postsynaptic assembly at perisomatic inhibitory synapses through gephyrin and collybistin. Neuron 63(5):628-42 CrossRef
    56. Priess JR (2005) Notch signaling in the / C. elegans embryo. WormBook 25:1-6
    57. Redmond L, Oh SR, Hicks C, Weinmaster G, Ghosh A (2000) Nuclear Notch1 signaling and the regulation of dendritic development. Nat Neurosci 3(1):30-0 CrossRef
    58. Reissner C, Klose M, Fairless R, Missler M (2008) Mutational analysis of the neurexin/neuroligin complex reveals essential and regulatory components. Proc Natl Acad Sci U S A 105(39):15124-5129 CrossRef
    59. Rowen L, Young J, Birditt B, Kaur A, Madan A, Philipps DL et al (2002) Analysis of the human neurexin genes: alternative splicing and the generation of protein diversity. Genomics 79(4):587-97 CrossRef
    60. Runkel F, Rohlmann A, Reissner C, Brand SM, Missler M (2013) Promoter-like sequences regulating transcriptional activity in neurexin and neuroligin genes. J Neurochem 127(1):36-7
    61. Sanders SJ, Ercan-Sencicek AG, Hus V, Luo R, Murtha MT, Moreno-De-Luca D et al (2011) Multiple recurrent de novo CNVs, including duplications of the 7q11.23 Williams syndrome region, are strongly associated with autism. Neuron 70(5):863-85 CrossRef
    62. Santini E, Huynh TN, MacAskill AF, Carter AG, Pierre P, Ruggero D et al (2013) Exaggerated translation causes synaptic and behavioural aberrations associated with autism. Nature 493(7432):411-15 CrossRef
    63. Saura CA, Servian-Morilla E, Scholl FG (2011) Presenilin/gamma-secretase regulates neurexin processing at synapses. PLoS ONE 6(4):e19430 CrossRef
    64. Scheiffele P, Fan J, Choih J, Fetter R, Serafini T (2000) Neuroligin expressed in nonneuronal cells triggers presynaptic development in contacting axons. Cell 101(6):657-69 CrossRef
    65. Siddiqui TJ, Pancaroglu R, Kang Y, Rooyakkers A, Craig AM (2010) LRRTMs and neuroligins bind neurexins with a differential code to cooperate in glutamate synapse development. J Neurosci 30(22):7495-506 CrossRef
    66. Suzuki K, Hayashi Y, Nakahara S, Kumazaki H, Prox J, Horiuchi K et al (2012) Activity-dependent proteolytic cleavage of neuroligin-1. Neuron 76(2):410-22 CrossRef
    67. Tabuchi K, Sudhof TC (2002) Structure and evolution of neurexin genes: insight into the mechanism of alternative splicing. Genomics 79(6):849-59 CrossRef
    68. Tabuchi K, Blundell J, Etherton MR, Hammer RE, Liu X, Powell CM et al (2007) A neuroligin-3 mutation implicated in autism increases inhibitory synaptic transmission in mice. Science 318(5847):71-6 CrossRef
    69. Treutlein B, Gokce O, Quake SR, Sudhof TC (2014) Cartography of neurexin alternative splicing mapped by single-molecule long-read mRNA sequencing. Proc Natl Acad Sci U S A 111(13):E1291–E1299 CrossRef
    70. Uemura T, Lee SJ, Yasumura M, Takeuchi T, Yoshida T, Ra M et al (2010) Trans-synaptic interaction of GluRdelta2 and Neurexin through Cbln1 mediates synapse formation in the cerebellum. Cell 141(6):1068-079 CrossRef
    71. Ullrich B, Ushkaryov YA, Sudhof TC (1995) Cartography of neurexins: more than 1000 isoforms generated by alternative splicing and expressed in distinct subsets of neurons. Neuron 14(3):497-07 CrossRef
    72. Ushkaryov YA, Sudhof TC (1993) Neurexin III alpha: extensive alternative splicing generates membrane-bound and soluble forms. Proc Natl Acad Sci U S A 90(14):6410-414 CrossRef
    73. Ushkaryov YA, Petrenko AG, Geppert M, Sudhof TC (1992) Neurexins: synaptic cell surface proteins related to the alpha-latrotoxin receptor and laminin. Science 257(5066):50-6 CrossRef
    74. Vaags AK, Lionel AC, Sato D, Goodenberger M, Stein QP, Curran S et al (2012) Rare deletions at the neurexin 3 locus in autism spectrum disorder. Am J Hum Genet 90(1):133-41 CrossRef
    75. Varoqueaux F, Aramuni G, Rawson RL, Mohrmann R, Missler M, Gottmann K et al (2006) Neuroligins determine synapse maturation and function. Neuron 51(6):741-54 CrossRef
    76. Xu JY, Xia QQ, Xia J (2012) A review on the current neuroligin mouse models. Sheng Li Xue Bao 64(5):550-62
    77. Zeng X, Sun M, Liu L, Chen F, Wei L, Xie W (2007) Neurexin-1 is required for synapse formation and larvae associative learning in Drosophila. FEBS Lett 581(13):2509-516 CrossRef
    78. Zhang W, Rohlmann A, Sargsyan V, Aramuni G, Hammer RE, Sudhof TC et al (2005) Extracellular domains of alpha-neurexins participate in regulating synaptic transmission by selectively affecting N- and P/Q-type Ca2?+?channels. J Neurosci 25(17):4330-342 CrossRef
  • 作者单位:Fernando Calahorro (1)

    1. Centre for Biological Sciences, University of Southampton, Life Sciences Building 85, Southampton, SO17 1BJ, UK
  • ISSN:1439-1104
文摘
Neuroligins are cell-adhesion proteins that interact with neurexins at the synapse. This interaction may contribute to differentiation, plasticity and specificity of synapses. In humans, single mutations in neuroligin-encoding genes are implicated in autism spectrum disorder and/or mental retardation. Moreover, some copy number variations and point mutations in neurexin-encoding genes have been linked to neurodevelopmental disorders including autism. Neurexins are subject to extensive alternative splicing, highly regulated in mammals, with a great physiological importance. In addition, neuroligins and neurexins are subjected to proteolytic processes that regulate synaptic transmission modifying pre- and postsynaptic activities and may also regulate the remodelling of spines at specific synapses. Four neuroligin genes exist in mice and five in human, whilst in the nematode Caenorhabditis elegans, there is only one orthologous gene. In a similar manner, in mammals, there are three neurexin genes, each of them encoding two major isoforms named α and β, respectively. In contrast, there is one neurexin gene in C. elegans that also generates two isoforms like mammals. The complexity of the genetic organization of neurexins is due to extensive processing resulting in hundreds of isoforms. In this review, a wide comparison is made between the genes in the nematode and human with a view to better understanding the conservation of processing in these synaptic proteins in C. elegans, which may serve as a genetic model to decipher the synaptopathies underpinning neurodevelopmental disorders such as autism.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700