A prime/boost strategy using DNA/fowlpox recombinants expressing the genetically attenuated E6 protein as a putative vaccine against HPV-16-associated cancers
详细信息    查看全文
  • 作者:Massimiliano Bissa (1)
    Elena Illiano (1)
    Sole Pacchioni (2)
    Francesca Paolini (3)
    Carlo Zanotto (2)
    Carlo De Giuli Morghen (2) (4)
    Silvia Massa (5)
    Rosella Franconi (5)
    Antonia Radaelli (1) (4)
    Aldo Venuti (3)

    1. Department of Pharmacological and Biomolecular Sciences
    ; Universit脿 di Milano ; Milan ; Italy
    2. Department of Medical Biotechnologies and Translational Medicine
    ; Universit脿 di Milano ; Milan ; Italy
    3. Laboratory of Virology HPV-UNIT
    ; Regina Elena National Cancer Institute ; Rome ; Italy
    4. Cellular and Molecular Pharmacology Section
    ; CNR Institute of Neurosciences ; Universit脿 di Milano ; Milan ; Italy
    5. Technical Unit of Radiation Biology and Human Health
    ; Italian National Agency for New Technologies ; Energy and Sustainable Economic Development (ENEA) ; Casaccia Research Centre ; Rome ; Italy
  • 关键词:HPV ; Recombinant preventive/therapeutic vaccines ; Fowlpox virus ; Prime/boost immunizations ; Mutated E6 oncoprotein
  • 刊名:Journal of Translational Medicine
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:13
  • 期:1
  • 全文大小:988 KB
  • 参考文献:1. Zur Hausen, H (2009) Papillomaviruses in the causation of human cancers: a brief historical account. Virol 384: pp. 260-5 46" target="_blank" title="It opens in new window">CrossRef
    2. Bouvard, V, Baan, R, Straif, K, Grosse, Y, Secretan, B, ElGhissassi, F (2009) WHO international agency for research on cancer monograph working group: a review of human carcinogens鈥損art B: biological agents. Lancet Oncol 10: pp. 321-2 470-2045(09)70096-8" target="_blank" title="It opens in new window">CrossRef
    3. Doorbar, J, Quint, W, Banks, L, Bravo, I, Stoler, M, Broker, T (2012) The biology and life-cycle of human papillomaviruses. Vaccine 305: pp. F55-70 CrossRef
    4. Guan, P, Howell-Jones, R, Li, N, Bruni, L, Sanjose, S, Franceschi, S (2012) Human papillomavirus types in 115,789 HPV-positive women: a meta-analysis from cervical infection to cancer. Int J Canc 131: pp. 2349-59 485" target="_blank" title="It opens in new window">CrossRef
    5. Kirnbauer, R, Booy, N, Chengt, DR, Lowy, DR, Schiller, JT (1992) Papillomavirus Li major capsid protein self-assembles into virus-like particles that are highly immunogenic. Proc Natl Acad Sci USA 89: pp. 12180-4 4.12180" target="_blank" title="It opens in new window">CrossRef
    6. Hagensee, ME, Yaegashi, N, Galloway, DA (1993) Self-assembly of human papillomavirus type 1 capsids by expression of the L1 protein alone or by coexpression of the L1 and L2 capsid proteins. J Virol 67: pp. 315-22
    7. Harper, DM, Franco, EL, Wheeler, CM, Moscicki, AB, Romanowski, B, Roteli-Martins, CM (2006) Sustained efficacy up to 4.5聽years of a bivalent L1 virus-like particle vaccine against human papillomavirus types 16 and 18: follow-up from a randomised control trial. Lancet 367: pp. 1247-55 40-6736(06)68439-0" target="_blank" title="It opens in new window">CrossRef
    Prophylactic efficacy of a quadrivalent human papillomavirus (HPV) vaccine in women with virological evidence of HPV infection. J Infect Dis 196: pp. 1431-2 4" target="_blank" title="It opens in new window">CrossRef
    8. Hung, CF, Ma, B, Monie, A, Tsen, SW, Wu, TC (2008) Therapeutic human papillomavirus vaccines: current clinical trials and future directions. Expert Opin Biol Ther 8: pp. 421-39 4712598.8.4.421" target="_blank" title="It opens in new window">CrossRef
    9. Smotkin, D, Wettstein, F (1986) Transcription of human papillomavirus type 16 early genes in cervical cancer and cancer-derived cell line and identification of the E7 protein. Proc Natl Acad Sci USA 83: pp. 4680-4 4680" target="_blank" title="It opens in new window">CrossRef
    10. Androphy, EJ, Hubbert, NL, Schiller, JT, Lowy, DR (1987) Identification of the HPV-16 E6 protein from transformed mouse cells and human cervical carcinoma cells. EMBO J 6: pp. 989-92
    11. Hawley-Nelson, P, Vousden, KH, Hubbert, NL, Lowy, DR, Schiller, JT (1989) HPV16 E6 and E7 proteins cooperate to immortalize human foreskin keratinocytes. EMBO J 8: pp. 3905-10
    12. Goodwin, EC, DiMaio, D (2000) Repression of human papillomavirus oncogenes in HeLa cervical carcinoma cells causes the orderly reactivation of dormant tumor suppressor pathways. Proc Natl Acad Sci USA 97: pp. 12513-8 CrossRef
    13. Yoshinouchi, M, Yamada, T, Kizaki, M, Fen, J, Koseki, T, Ikeda, Y (2003) In vitro and in vivo growth suppression of human papillomavirus 16-positive cervical cancer cells by E6 siRNA. Mol Ther 8: pp. 762-8 4" target="_blank" title="It opens in new window">CrossRef
    14. Song, S, Liem, A, Miller, JA, Lambert, PF (2000) Human papillomavirus type 16 E6 and E7 contribute differently to carcinogenesis. Virol 267: pp. 141-50 CrossRef
    15. Eiben, GL, Silva, DM, Fausch, SC, Poole, IC, Nishimura, MI, Kast, WM (2003) Cervical cancer vaccines: recent advances in HPV research. Viral Immunol 16: pp. 111-21 403322017866" target="_blank" title="It opens in new window">CrossRef
    16. Meneguzzi, G, Cerni, C, Kieny, MP, Lathe, R (1991) Immunization against human papillomavirus type 16 tumor cells with recombinant vaccinia viruses expressing E6 and E7. Virol 181: pp. 62-9 42-6822(91)90470-V" target="_blank" title="It opens in new window">CrossRef
    17. Campo, MS, Grindlay, GJ, O鈥橬eil, BW, Chandrachud, LM, McGarvie, GM, Jarrett, WF (1993) Prophylactic and therapeutic vaccination against a mucosal papillomavirus. J Gen Virol 74: pp. 945-53 4-6-945" target="_blank" title="It opens in new window">CrossRef
    18. Chen, L, Mizuno, MT, Singhal, MC, Hu, SL, Galloway, DA, Hellstr枚m, I (1992) Induction of cytotoxic T lymphocytes specific for a syngeneic tumor expressing the E6 oncoprotein of human papillomavirus type 16. J Immunol 148: pp. 2617-21
    19. Burg, SH, Kwappenberg, KM, O鈥橬eill, T, Brandt, RM, Melief, CJ, Hickling, JK (2001) Pre-clinical safety and efficacy of TA-CIN, a recombinant HPV16 L2E6E7 fusion protein vaccine, in homologous and heterologous prime-boost regimens. Vaccine 19: pp. 3652-60 4-410X(01)00086-X" target="_blank" title="It opens in new window">CrossRef
    20. Chen, CH, Wang, TL, Ji, H, Hung, CF, Pardoll, DM, Cheng, WF (2001) Recombinant DNA vaccines protect against tumors that are resistant to recombinant vaccinia vaccines containing the same gene. Gene Ther 8: pp. 128-38 CrossRef
    21. Porgador, A, Irvine, KR, Iwasaki, A, Barber, BH, Restifo, NP, Germain, RN (1998) Predominant role for directly transfected dendritic cells in antigen presentation to CD8+ T cells after gene gun immunization. J Exp Med 188: pp. 1075-82 4/jem.188.6.1075" target="_blank" title="It opens in new window">CrossRef
    22. Hsieh, CJ, Kim, TW, Hung, CF, Juang, J, Moniz, M, Boyd, DA (2004) Enhancement of vaccinia vaccine potency by linkage of tumor antigen gene to gene encoding calreticulin. Vaccine 22: pp. 3993-4001 4.03.057" target="_blank" title="It opens in new window">CrossRef
    23. Lamikanra, A, Pan, ZK, Isaacs, SN, Wu, TC, Paterson, Y (2001) Regression of established human papillomavirus type 16 (HPV-16) immortalized tumors in vivo by vaccinia viruses expressing different forms of HPV-16 E7 correlates with enhanced CD8(+) T-cell responses that home to the tumor site. J Virol 75: pp. 9654-64 4-9664.2001" target="_blank" title="It opens in new window">CrossRef
    24. Borysiewicz, LK, Fiander, A, Nimako, M, Man, S, Wilkinson, GW, Westmoreland, D (1996) A recombinant vaccinia virus encoding human papillomavirus types 16 and 18, E6 and E7 proteins as immunotherapy for cervical cancer. Lancet 347: pp. 1523-7 40-6736(96)90674-1" target="_blank" title="It opens in new window">CrossRef
    25. Adams, M, Borysiewicz, L, Fiander, A, Man, S, Jasani, B, Navabi, H (2001) Clinical studies of human papilloma vaccines in pre-invasive and invasive cancer. Vaccine 19: pp. 2549-56 4-410X(00)00488-6" target="_blank" title="It opens in new window">CrossRef
    26. Baldwin, PJ, Burg, SH, Boswell, CM, Offringa, R, Hickling, JK, Dobson, J (2003) Vaccinia-expressed human papillomavirus 16 and 18 e6 and e7 as a therapeutic vaccination for vulval and vaginal intraepithelial neoplasia. Clin Cancer Res 9: pp. 5205-13
    27. Smyth, LJ, Poelgeest, MI, Davidson, EJ, Kwappenberg, KM, Burt, D, Sehr, P (2004) Immunological responses in women with human papillomavirus type 16 (HPV-16)-associated anogenital intraepithelial neoplasia induced by heterologous prime-boost HPV-16 oncogene vaccination. Clin Cancer Res 10: pp. 2954-61 432.CCR-03-0703" target="_blank" title="It opens in new window">CrossRef
    28. Acres, B, Bonnefoy, JY (2008) Clinical development of MVA-based therapeutic cancer vaccines. Expert Rev Vaccines 7: pp. 889-93 4760584.7.7.889" target="_blank" title="It opens in new window">CrossRef
    29. Brun, JL, Dalstein, V, Leveque, J, Mathevet, P, Raulic, P, Baldauf, JJ, Scholl, S, Huynh, B, Riethmuller, D, Clavel, C, Birembaut, P, Calenda, V, Baudin, M, Bory, JP (2011) Regression of high-grade cervical intraepithelial neoplasia with TG4001 targeted immunotherapy. Am J Obstet Gynecol 204: pp. 169-e1-8 CrossRef
    30. Chen, CH, Wang, TL, Hung, CF, Pardoll, DM, Wu, TC (2000) Boosting with recombinant vaccinia increases HPV-16 E7-specific T cell precursor frequencies of HPV-16 E7-expressing DNA vaccines. Vaccine 18: pp. 2015-22 4-410X(99)00528-9" target="_blank" title="It opens in new window">CrossRef
    31. Mackova, J, Stasikova, J, Kutinova, L, Masin, J, Hainz, P, Simsova, M (2006) Prime/boost immunotherapy of HPV16-induced tumors with E7 protein delivered by Bordetella adenylate cyclase and modified vaccinia virus Ankara. Cancer Immunol Immunother 55: pp. 39-46 CrossRef
    32. Wlazlo, AP, Deng, H, Giles-Davis, W, Ertl, HC (2004) DNA vaccines against the human papillomavirus type 16 E6 or E7 oncoproteins. Cancer gene Ther 11: pp. 457-64 CrossRef
    33. Fiander, AN, Tristram, A, Davidson, EJ, Tomlinson, AE, Man, S, Baldwin, PJ (2006) Prime-boost vaccination strategy in women with high-grade, noncervical anogenital intraepithelial neoplasia: clinical results from a multicenter phase II trial. Int J Gynecol Cancer 16: pp. 1075-81 438.2006.00598.x" target="_blank" title="It opens in new window">CrossRef
    34. Blanchard, TJ, Alcami, A, Andrea, P, Smith, GL (1998) Modified vaccinia virus Ankara undergoes limited replication in human cells and lacks several immunomodulatory proteins: implications for use as a human vaccine. J Gen Virol 79: pp. 1159-67
    35. Drexler, I, Heller, K, Wahren, B, Erfle, V, Sutter, G (1998) Highly attenuated modified vaccinia virus Ankara replicates in baby hamster kidney cells, a potential host for virus propagation, but not in various human transformed and primary cells. J Gen Virol 79: pp. 347-52
    36. Radaelli, A, De Giuli Morghen, C, Zanotto, C, Pacchioni, S, Bissa, M, Franconi, R (2012) A prime/boost strategy by DNA/fowlpox recombinants expressing a mutant E7 protein for the immunotherapy of HPV-associated cancers. Virus Res 170: pp. 44-52 CrossRef
    37. Taylor, J, Paoletti, E (1988) Fowlpox virus as a vector in non-avian species. Vaccine 6: pp. 466-8 4-410X(88)90091-6" target="_blank" title="It opens in new window">CrossRef
    38. Bissa, M, Pacchioni, S, Zanotto, C, De Giuli Morghen, C, Radaelli, A (2013) GFP co-expression reduces the A33R gene expression driven by a fowlpox vector in replication permissive and non-permissive cell lines. J Virol Methods 187: pp. 172-6 CrossRef
    39. Pacchioni, S, Bissa, M, Zanotto, C, De Giuli Morghen, C, Illiano, E, Radaelli, A (2013) L1R, A27L, A33R and B5R vaccinia virus genes expressed by fowlpox recombinants as putative novel orthopoxvirus vaccines. J Transl Med 11: pp. 95 479-5876-11-95" target="_blank" title="It opens in new window">CrossRef
    40. Nomin茅, Y, Masson, M, Charbonnier, S, Zanier, K, Ristriani, T, Deryckere, F (2006) Structural and functional analysis of E6 oncoprotein: insights in the molecular pathways of human papillomavirus-mediated pathogenesis. Mol Cell 21: pp. 665-78 4" target="_blank" title="It opens in new window">CrossRef
    41. Ristriani, T, Fournane, S, Orfanoudakis, G, Masson, M (2009) A single-codon mutation converts HPV16 E6 oncoprotein into a potential tumor suppressor, which induces p53-dependent senescence of HPV-positive HeLa cervical cancer cells. Oncogene 28: pp. 762-72 422" target="_blank" title="It opens in new window">CrossRef
    42. Venuti, A, Massa, S, Mett, V, Vedova, LD, Paolini, F, Franconi, R (2009) An E7-based therapeutic vaccine protects mice against HPV16 associated cancer. Vaccine 27: pp. 3395-7 CrossRef
    43. Pacchioni, S, Volont茅, L, Zanotto, C, Pozzi, E, De Giuli Morghen, C, Radaelli, A (2010) Canarypox and fowlpox viruses as recombinant vaccine vectors: an ultrastructural comparative analysis. Arch Virol 155: pp. 915-24 CrossRef
    44. Rosel, JL, Earl, PL, Weir, J, Moss, B (1986) Conserved TAAATG sequence at the transcriptional and translational initiation sites of vaccinia virus late genes deduced by structural and functional analysis of the hindlll H genome fragment. J Virol 60: pp. 436-49
    45. Pozzi, E, Basavecchia, V, Zanotto, C, Pacchioni, S, De Giuli Morghen, C, Radaelli, A (2009) Construction and characterization of recombinant fowlpox viruses expressing human papilloma virus E6 and E7 oncoproteins. J Virol Methods 158: pp. 184-9 CrossRef
    46. Radaelli, A, De Giuli Morghen, C (1994) Expression of HIV-1 envelope gene by recombinant avipoxvirus. Vaccine 12: pp. 1101-9 4-410X(94)90180-5" target="_blank" title="It opens in new window">CrossRef
    47. Zanotto, C, Pozzi, E, Pacchioni, S, Bissa, M, De Giuli Morghen, C, Radaelli, A (2011) Construction and characterisation of a recombinant fowlpox virus that expresses the human papilloma virus L1 protein. J Transl Med 9: pp. 190-200 479-5876-9-190" target="_blank" title="It opens in new window">CrossRef
    48. Pozzi, E, Zanotto, C, Pacchioni, S, De Giuli Morghen, C, Radaelli, A (2009) MHC-restricted CTL assay: an improved method based on na茂ve and SV40-immortalized rabbit epidermal target cells. J Virol Methods 155: pp. 77-81 CrossRef
    49. Radaelli, A, Pozzi, E, Pacchioni, S, Zanotto, C, De Giuli Morghen, C (2010) Fowlpox virus recombinants expressing HPV-16 E6 and E7 oncogenes for the therapy of cervical carcinoma elicit humoral and cell-mediated responses in rabbits. J Transl Med 8: pp. 40 479-5876-8-40" target="_blank" title="It opens in new window">CrossRef
    50. Bissa, M, Pacchioni, S, Zanotto, C, De Giuli Morghen, C, Illiano, E, Granucci, F (2013) Systemically administered DNA and fowlpox recombinants expressing four vaccinia virus genes although immunogenic do notprotect mice against the highly pathogenic IHD-J vaccinia strain. Virus Res 178: pp. 374-82 CrossRef
    51. Radaelli, A, Bonduelle, O, Beggio, P, Mahe, B, Pozzi, E, Elli, V (2007) Prime-boost immunization with DNA, recombinant fowlpox virus and VLP(SHIV) elicit both neutralizing antibodies and IFNgamma-producing T cells against the HIV-envelope protein in mice that control env-bearing tumour cells. Vaccine 25: pp. 2128-38 CrossRef
    52. Peng, S, Ji, H, Trimble, C, He, L, Tsai, YC, Yeatermeyer, J (2004) Development of a DNA vaccine targeting human papillomavirus type 16 oncoprotein E6. J Virol 78: pp. 8468-76 468-8476.2004" target="_blank" title="It opens in new window">CrossRef
    53. Jochmus, I, Osen, W, Altmann, A, Buck, G, Hofmann, B, Schneider, A (1997) Specificity of human cytotoxic T lymphocytes induced by a human papillomavirus type 16 E7-derived peptide. J Gen Virol 78: pp. 1689-95
    54. Nomin茅, Y, Charbonnier, S, Ristriani, T, Stier, G, Masson, M, Cavusoglu, N (2003) Domain substructure of HPV E6 oncoprotein: biophysical characterization of the E6 C-terminal DNA-binding domain. Biochemistry 42: pp. 4909-17 CrossRef
    55. Sedman, SA, Barbosa, MS, Vass, WC, Hubbert, NL, Haas, JA, Lowy, DR (1991) The full-length E6 protein of human papillomavirus type 16 has transforming and trans-activating activities and cooperates with E7 to immortalize keratinocytes in culture. J Virol 65: pp. 4860-6
    56. Mizuuchi, M, Hirohashi, Y, Torigoe, T, Kuroda, T, Yasuda, K, Shimizu, Y (2012) Novel oligomannose liposome-DNA complex DNA vaccination efficiently evokes anti-HPV E6 and E7 CTL responses. Exp Mol Pathol 92: pp. 185-90 CrossRef
    57. Kanodia, S, Silva, DM, Kast, WM (2008) Recent advances in strategies for immunotherapy of human papillomavirus-induced lesions. Int J Cancer 122: pp. 247-59 CrossRef
    58. Gissmann L. Modern uterine cytopathology. Meisels A and Morin C, editors. Chicago: ASCP Press. 2007;169鈥?00.
    59. Meyer SI, Fuglsang K, Blaakaer J. Cell-mediated immune response: a clinical review of the therapeutic potential of human papillomavirus vaccination. Acta Obstet Gynecol Scand. 2014. doi:10.1111/aogs.12480.
    60. Peng, S, Song, L, Knoff, J, Wang, JW, Chang, YN, Hannaman, D (2014) Control of HPV-associated tumors by innovative therapeutic HPV DNA vaccine in the absence of CD4+ T cells. Cell Biosci 4: pp. 11 45-3701-4-11" target="_blank" title="It opens in new window">CrossRef
    61. Brandsma, JL, Shlyankevich, M, Su, Y, Zelterman, D, Rose, J, Buonocore, L (2010) Reversal of papilloma growth in rabbits therapeutically vaccinated against E6 with naked DNA and/or vesicular stomatitis virus vectors. Vaccine 28: pp. 8345-51 4.082" target="_blank" title="It opens in new window">CrossRef
    62. Brandsma, JL, Shlyankevich, M, Zelterman, D, Su, Y (2014) Therapeutic vaccination of rabbits with a ubiquitin-fused papillomavirus E1, E2, E6 and E7 DNA vaccine. Vaccine 25: pp. 6158-63 CrossRef
    63. Bagarazzi, ML, Yan, J, Morrow, MP, Shen, X, Parker, RL, Lee, JC, Giffear, M, Pankhong, P, Khan, AS, Broderick, KE, Knott, C, Lin, F, Boyer, JD, Draghia-Akli, R, White, CJ, Kim, CJ, Weiner, DB, Sardesai, NY (2012) Immunotherapy against HPV16/18 generates potent TH1 and cytotoxic cellular immune responses. Sci Transl Med 4: pp. 155ra138 4414" target="_blank" title="It opens in new window">CrossRef
    64. Massa, S, Simeone, P, Muller, A, Benvenuto, E, Venuti, A, Franconi, R (2008) Antitumor activity of DNA vaccines based on the Human Papillomavirus-16 E7 protein genetically fused to a plant virus coat protein. Hum Gene Ther 19: pp. 354-64 CrossRef
    65. Whitehead, M, Ohlschl盲ger, P, Almajhdi, FN, Alloza, L, Marz谩bal, P, Meyers, AE (2014) Human papillomavirus (HPV) type 16 E7 protein bodies cause tumour regression in mice. BMC Cancer 14: pp. 367 471-2407-14-367" target="_blank" title="It opens in new window">CrossRef
    66. Skinner, MA, Laidlaw, SM, Eldaghayes, I, Kaiser, P, Cottingham, MG (2005) Fowlpox virus as a recombinant vaccine vector for use in mammals and poultry. Expert Rev Vaccines 4: pp. 63-76 4760584.4.1.63" target="_blank" title="It opens in new window">CrossRef
  • 刊物主题:Biomedicine general; Medicine/Public Health, general;
  • 出版者:BioMed Central
  • ISSN:1479-5876
文摘
Background Considering the high number of new cases of cervical cancer each year that are caused by human papilloma viruses (HPVs), the development of an effective vaccine for prevention and therapy of HPV-associated cancers, and in particular against the high-risk HPV-16 genotype, remains a priority. Vaccines expressing the E6 and E7 proteins that are detectable in all HPV-positive pre-cancerous and cancer cells might support the treatment of HPV-related lesions and clear already established tumors. Methods In this study, DNA and fowlpox virus recombinants expressing the E6F47R mutant of the HPV-16 E6 oncoprotein were generated, and their correct expression verified by RT-PCR, Western blotting and immunofluorescence. Immunization protocols were tested in a preventive or therapeutic pre-clinical mouse model of HPV-16 tumorigenicity using heterologous (DNA/FP) or homologous (DNA/DNA and FP/FP) prime/boost regimens. The immune responses and therapeutic efficacy were evaluated by ELISA, ELISPOT assays, and challenge with TC-1* cells. Results In the preventive protocol, while an anti-E6-specific humoral response was just detectable, a specific CD8+ cytotoxic T-cell response was elicited in immunized mice. After the challenge, there was a delay in cancer appearance and a significant reduction of tumor volume in the two groups of E6-immunized mice, thus confirming the pivotal role of the CD8+ T-cell response in the control of tumor growth in the absence of E6-specific antibodies. In the therapeutic protocol, in-vivo experiments resulted in a higher number of tumor-free mice after the homologous DNA/DNA or heterologous DNA/FP immunization. Conclusions These data establish a preliminary indication for the prevention and treatment of HPV-related tumors by the use of DNA and avipox constructs as safe and effective immunogens following a prime/boost strategy. The combined use of recombinants expressing both E6 and E7 proteins might improve the antitumor efficacy, and should represent an important approach to control HPV-associated cancers.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700