Predicting HIV-1 broadly neutralizing antibody epitope networks using neutralization titers and a novel computational method
详细信息    查看全文
  • 作者:Mark C Evans (9)
    Pham Phung (9)
    Agnes C Paquet (9)
    Anvi Parikh (9)
    Christos J Petropoulos (9)
    Terri Wrin (9)
    Mojgan Haddad (9)

    9. Monogram Biosciences Inc.
    ; 345 Oyster Point Blvd. ; South San Francisco ; CA ; 94080 ; USA
  • 关键词:HIV ; 1 antibody ; Thick patch analysis ; Bioinformatics algorithms ; Boosting algorithm ; Machine learning ; Neutralization ; in ; silico epitope mapping ; Epitope networks ; Structural mapping ; Sequence and structure analysis
  • 刊名:BMC Bioinformatics
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:15
  • 期:1
  • 全文大小:1,405 KB
  • 参考文献:1. Burton, DR, Stanfield, RL, Wilson, IA (2005) Proc Natl Acad Sci U S A 102: pp. 14943-14948 CrossRef
    2. Saphire, EO, Montero, M, Menendez, A (2007) J Mol Biol 369: pp. 696-709 CrossRef
    3. Walker, LM, Walker, LM, Huber, M, Doores, KJ, Falkowska, E, Pejchal, R, Julien, JP, Wang, SK, Ramos, A, Chan-Hui, PY, Moyle, M, Mitcham, JL, Hammond, PW, Olsen, OA, Phung, P, Fling, S, Wong, CH, Phogat, S, Wrin, T, Simek, MD, Koff, WC, Wilson, IA, Burton, DR, Poignard, P (2011) Broad neutralization coverage of HIV by multiple highly potent antibodies. Nature 477: pp. 466 CrossRef
    4. Walker, LM, Phogat, SK, Chan-Hui, PY, Wagner, D, Phung, P, Goss, JL, Wrin, T, Simek, MD, Fling, S, Mitcham, JL, Lehrman, JK, Priddy, FH, Olsen, OA, Frey, SM, Hammond, PW, Kaminsky, S, Zamb, T, Moyle, M, Koff, WC, Poignard, P, Burton, DR (2009) Broad and potent neutralizing antibodies from an African donor reveal a new HIV-1 vaccine target. Science (New York, NY) 326: pp. 285 CrossRef
    5. Burton, DR, Weiss, RA (2010) IDS/HIV. A boost for HIV vaccine design. Science 329: pp. 770-773 CrossRef
    6. Virgin, HW, Walker, BD (2010) Immunology and the elusive AIDS vaccine. Nature 464: pp. 224-231 CrossRef
    7. Flynn, NM, Forthal, DN, Harro, CD, Judson, FN, Mayer, KH, Para, MF (2005) Placebo-controlled phase 3 trial of a recombinant glycoprotein 120 vaccine to prevent HIV-1 infection. J Infect Dis 191: pp. 654-655 CrossRef
    8. Pitisuttithum, P, Gilbert, P, Gurwith, M, Heyward, W, Martin, M, van Griensven, F, Hu, D, Tappero, JW, Choopanya, K (2006) Randomized, double-blind, placebo-controlled efficacy trial of a bivalent recombinant glycoprotein 120 HIV-1 vaccine among injection drug users in Bangkok, Thailand. J Infect Dis 194: pp. 1661-1671 CrossRef
    9. Richman, DD, Wrin, T, Little, SJ, Petropoulos, CJ (2003) Rapid evolution of the neutralizing antibody response to HIV type 1 infection. Proc Natl Acad Sci USA 100: pp. 4144-4149 CrossRef
    10. Wei, X, Decker, JM, Wang, S, Hui, H, Kappes, JC, Wu, X, Salazar-Gonzalez, JF, Salazar, MG, Kilby, JM, Saag, MS, Komarova, NL, Nowak, MA, Hahn, BH, Kwong, PD, Shaw, GM (2003) Antibody neutralization and escape by HIV-1. Nature 422: pp. 307-312 CrossRef
    11. M, B-P, Morgand, M, Moreau, A, Jestin, P, Simonnet, C, Tran, L, Goujard, C, Meyer, L, Barin, F, Braibant, M (2013) Evidence for a continuous drift of the HIV-1 Species towards higher resistance to neutralizing antibodies over the course of the epidemic. PLoS Pathog 9: pp. e1003477 CrossRef
    12. Jardine, J, Julien, J-P, Menis, S, Ota, T, Kalyuzhniy, O, McGuire, A, Sok, D, Huang, P-S, MacPherson, S, Jones, M, Nieusma, T, Mathison, J, Baker, D, Ward, AB, Burton, DR, Stamatatos, L, Nemazee, D, Wilson, IA, Schief, WR (2013) Rational HIV immunogen design to target specific Germline B cell receptors. Science 340: pp. 711-716 CrossRef
    13. Van Regenmortel, MH (2012) Basic research in HIV vaccinology is hampered by reductionist thinking. Front Immunol 3: pp. 194 CrossRef
    14. Binley, JM, Wrin, T, Korber, B, Zwick, MB, Wang, M, Chappey, C, Stiegler, G, Kunert, R, Zolla-Pazner, S, Katinger, H, Petropoulos, CJ, Burton, DR (2004) Comprehensive cross-clade neutralization analysis of a panel of anti-human immunodeficiency virus type 1 monoclonal antibodies. J Virol 78: pp. 13232-13252 CrossRef
    15. Pantophlet, R, Saphire, EO, Poignard, P, Parren, PWHI, Wilson, IA, Burton, DR (2003) Fine mapping of the interaction of neutralizing and nonneutralizing monoclonal antibodies with the CD4 binding site of human immunodeficiency virus type 1 gp120. J Virol 77: pp. 642-658 CrossRef
    16. Evans, MC (2008) Recent advances in immunoinformatics: application of in silico tools to drug development. Curr Opin Drug Discov Devel 11: pp. 233-241
    17. EL-Manzalawy, Y, Honavar, V (2010) Recent advances in B-cell epitope prediction methods. Immunome Res 6: pp. S2 CrossRef
    18. Liu, R, Hu, J (2011) Prediction of Discontinuous B-Cell Epitopes Using Logistic Regression and Structural Information. J Proteomics Bioinform.
    19. Rubinstein, ND, Mayrose, I, Pupko, T (2009) A machine-learning approach for predicting B-cell epitopes. Mol Immunol 46: pp. 840-847 CrossRef
    20. Sun, J, Wu, D, Xu, T, Wang, X, Xu, X, Tao, L, Li, Y, Cao, Z (2009) SEPPA: a computational server for spatial epitope prediction of protein antigens. Nucleic Acids Res 37: pp. W612-W616 CrossRef
    21. Soga, S, Kuroda, D, Shirai, H, Kobori, M, Hirayama, N (2010) Use of amino acid composition to predict epitope residues of individual antibodies. Protein Eng Des Sel 23: pp. 441-448 CrossRef
    22. Zhao, L, Li, J (2010) Mining for the antibody-antigen interacting associations that predict the B cell epitopes. BMC Struct Biol 10: pp. S6 CrossRef
    23. Bublil, EM, Freund, NT, Mayrose, I, Penn, O, Roitburd-Berman, A, Rubinstein, ND, Pupko, T, Gershoni, JM (2007) Stepwise prediction of conformational discontinuous B-cell epitopes using the Mapitope algorithm. Proteins 68: pp. 294-304 CrossRef
    24. Chen, WH, Sun, PP, Lu, Y, Guo, WW, Huang, YX, Ma, ZQ (2011) MimoPro: a more efficient Web-based tool for epitope prediction using phage display libraries. BMC Bioinformatics 12: pp. 199 CrossRef
    25. Mayrose, I, Shlomi, T, Rubinstein, ND, Gershoni, JM, Ruppin, E, Sharan, R, Pupko, T (2007) Epitope mapping using combinatorial phage-display libraries: a graph-based algorithm. Nucleic Acids Res 35: pp. 69-78 CrossRef
    26. Moreau, V, Granier, C, Villard, S, Laune, D, Molina, F (2006) Discontinuous epitope prediction based on mimotope analysis. Bioinformatics (Oxford, England) 22: pp. 1088-1095 CrossRef
    27. Falkowska, E, Ramos, A, Feng, Y, Zhou, T, Moquin, S, Walker, LM, Wu, X, Seaman, MS, Wrin, T, Kwong, PD (2012) PGV04, an HIV-1 gp120 CD4 binding site antibody, is broad and potent in neutralization but does not induce conformational changes characteristic of CD4. J Virol 86: pp. 4394-4403 CrossRef
    28. Jones, S, Thornton, JM (1997) Prediction of protein-protein interaction sites using patch analysis. J Mol Biol 272: pp. 133-143 CrossRef
    29. Murakami, Y, Jones, S (2006) SHARP2: protein-protein interaction predictions using patch analysis. Bioinformatics 22: pp. 1794-1795 CrossRef
    30. Zhang, W, Xiong, Y, Zhao, M, Zou, H, Ye, X, Liu, J (2011) Prediction of conformational B-cell epitopes from 3D structures by random forest with a distance-based feature. BMC Bioinformatics 12: pp. 341 CrossRef
    31. Kabsch, W, Sander, C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22: pp. 2577-2637 CrossRef
    32. Lee, B, Richards, FM (1971) The interpretation of protein structures: estimation of static accessibility. J Mol Biol 55: pp. 379-400 CrossRef
    33. Singh, H, Ahmad, S (2009) Context dependent reference states of solvent accessibility derived from native protein structures and assessed by predictability analysis. BMC Struct Biol 9: pp. 25 CrossRef
    34. Chothia, C (1976) The nature of the accessible and buried surfaces in proteins. J Mol Biol 105: pp. 1-12 CrossRef
    35. Janin, J, Wodak, S (1978) Conformation of amino acid side-chains in proteins. J Mol Biol 125: pp. 357-386 CrossRef
    36. Amitai, G, Shemesh, A, Sitbon, E, Shklar, M, Netanely, D, Venger, I, Pietrokovski, S (2004) Network analysis of protein structures identifies functional residues. J Mol Biol 344: pp. 1135-1146 CrossRef
    37. Doncheva, NT, Klein, K, Domingues, FS, Albrecht, M (2011) Analyzing and visualizing residue networks of protein structures. Trends Biochem Sci 36: pp. 179-182 CrossRef
    38. Song, J, Tan, H, Mahmood, K, Law, RHP, Buckle, AM, Webb, GI, Akutsu, T, Whisstock, JC (2009) Prodepth: predict residue depth by support vector regression approach from protein sequences only. PLoS ONE 4: pp. e7072 CrossRef
    39. Pintar, A, Carugo, O, Pongor, S (2003) Atom depth as a descriptor of the protein interior. Biophys J 84: pp. 2553-2561 CrossRef
    40. Simek, MD, Rida, W, Priddy, FH, Pung, P, Carrow, E, Laufer, DS, Lehrman, JK, Boaz, M, Tarragona-Fiol, T, Miiro, G, Birungi, J, Pozniak, A, McPhee, DA, Manigart, O, Karita, E, Inwoley, A, Jaoko, W, Dehovitz, J, Bekker, LG, Pitisuttithum, P, Paris, R, Walker, LM, Poignard, P, Wrin, T, Fast, PE, Burton, DR, Koff, WC (2009) Human immunodeficiency virus type 1 elite neutralizers: individuals with broad and potent neutralizing activity identified by using a high-throughput neutralization assay together with an analytical selection algorithm. J Virol 83: pp. 7337-7348 CrossRef
    41. Stamatatos, L, Morris, L, Burton, DR, Mascola, JR, Morris, L, Burton, DR, Mascola, JR (2009) Neutralizing antibodies generated during natural HIV-1 infection: good news for an HIV-1 vaccine?. Nat Med 15: pp. 866-870
    42. Gnanakaran, S, Daniels, MG, Bhattacharya, T, Lapedes, AS, Sethi, A, Li, M, Tang, H, Greene, K, Gao, H, Haynes, BF, Cohen, MS, Shaw, GM, Seaman, MS, Kumar, A, Gao, F, Montefiori, DC, Korber, B (2010) Genetic signatures in the envelope glycoproteins of HIV-1 that associate with broadly neutralizing antibodies. PLoS Comput Biol 6: pp. e1000955 CrossRef
    43. Nakamura GR, Fonseca DP, O'Rourke SM, Vollrath AL, Berman PW: Monoclonal antibodies to the V2 domain of MN-rgp120: fine mapping of epitopes and inhibition of alpha4beta7 binding. / PLoS One 7(6):e39045.
    44. Larkin, M, Blackshields, G, Brown, NP, Chenna, R, McGettigan, PA, McWilliam, H, Valentin, F, Wallace, IM, Wilm, A, Lopez, R, Thompson, JD, Gibson, TJ, Higgins, DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics (Oxford, England) 23: pp. 2947-2948 CrossRef
    45. Eddy, SR (1996) Hidden Markov models. Curr Opin Struct Biol 6: pp. 361-365 CrossRef
    46. Nielsen, M, Lundegaard, C, Lund, O, Petersen, TN (2010) CPHmodels-3.0--remote homology modeling using structure-guided sequence profiles. Nucleic Acids Res 38: pp. W576-581 CrossRef
    47. Ihaka, R, Gentleman, R (1996) R: A language for data analysis and graphics. J Comput Graph Stat 5: pp. 299-314
    48. Dimitriadou, E, Hornik, K, Leisch, F, Meyer, D, Weingessel, A, Wein, TU (2010) e1071: Misc functions of the Department of Statistics, TU Wien.
    49. Pettersen, EF, Goddard, TD, Huang, CC, Couch, GS, Greenblatt, DM, Meng, EC, Ferrin, TE (2004) UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem 25: pp. 1605-1612 CrossRef
    50. Pancera, M, Shahzad-Ul-Hussan, S, Doria-Rose, NA, McLellan, JS, Bailer, RT, Dai, K, Loesgen, S, Louder, MK, Staupe, RP, Yang, Y, Zhang, B, Parks, R, Eudailey, J, Lloyd, KE, Blinn, J, Alam, SM, Haynes, BF, Amin, MN, Wang, LX, Burton, DR, Koff, WC, Nabel, GJ, Mascola, JR, Bewley, CA, Kwong, PD (2013) Structural basis for diverse N-glycan recognition by HIV-1-neutralizing V1-V2-directed antibody PG16. Nat Struct Mol Biol 20: pp. 804-813 CrossRef
    51. McLellan, JS, Pancera, M, Carrico, C, Gorman, J, Julien, JP, Khayat, R, Louder, R, Pejchal, R, Sastry, M, Dai, K, O'Dell, S, Patel, N, Shahzad-ul-Hussan, S, Yang, Y, Zhang, B, Zhou, T, Zhu, J, Boyington, JC, Chuang, GY, Diwanji, D, Georgiev, I, Kwon, YD, Lee, D, Louder, MK, Moquin, S, Schmidt, SD, Yang, ZY, Bonsignori, M, Crump, JA, Kapiga, SH (2011) Structure of HIV-1 gp120 V1/V2 domain with broadly neutralizing antibody PG9. Nature 480: pp. 336-343 CrossRef
    52. Travers, SAA, Tully, DC, McCormack, GP, Fares, MA (2007) A study of the coevolutionary patterns operating within the env gene of the HIV-1 group M subtypes. Mol Biol Evol 24: pp. 2787-2801 CrossRef
    53. Changela, A, Wu, X, Yang, Y, Zhang, B, Zhu, J, Nardone, GA, O'Dell, S, Pancera, M, Gorny, MK, Phogat, S, Robinson, JE, Stamatatos, L, Zolla-Pazner, S, Mascola, JR, Kwong, PD (2011) Crystal structure of human antibody 2909 reveals conserved features of quaternary structure-specific antibodies that potently neutralize HIV-1. J Virol 85: pp. 2524-2535 CrossRef
    54. Wu, X, Yang, ZY, Li, Y, Hogerkorp, CM, Schief, WR, Seaman, MS, Zhou, T, Schmidt, SD, Wu, L, Xu, L, Longo, NS, McKee, K, O'Dell, S, Louder, MK, Wycuff, DL, Feng, Y, Nason, M, Doria-Rose, N, Connors, M, Kwong, PD, Roederer, M, Wyatt, RT, Nabel, GJ, Mascola, JR (2010) Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1. Science 329: pp. 856-861 CrossRef
    55. Julien, JP, Sok, D, Khayat, R, Lee, JH, Doores, KJ, Walker, LM, Ramos, A, Diwanji, DC, Pejchal, R, Cupo, A, Katpally, U, Depetris, RS, Stanfield, RL, McBride, R, Marozsan, AJ, Paulson, JC, Sanders, RW, Moore, JP, Burton, DR, Poignard, P, Ward, AB, Wilson, IA (2013) Broadly neutralizing antibody PGT121 allosterically modulates CD4 binding via recognition of the HIV-1 gp120 V3 base and multiple surrounding glycans. PLoS Pathog 9: pp. e1003342 CrossRef
  • 刊物主题:Bioinformatics; Microarrays; Computational Biology/Bioinformatics; Computer Appl. in Life Sciences; Combinatorial Libraries; Algorithms;
  • 出版者:BioMed Central
  • ISSN:1471-2105
文摘
Background Recent efforts in HIV-1 vaccine design have focused on immunogens that evoke potent neutralizing antibody responses to a broad spectrum of viruses circulating worldwide. However, the development of effective vaccines will depend on the identification and characterization of the neutralizing antibodies and their epitopes. We developed bioinformatics methods to predict epitope networks and antigenic determinants using structural information, as well as corresponding genotypes and phenotypes generated by a highly sensitive and reproducible neutralization assay. 282 clonal envelope sequences from a multiclade panel of HIV-1 viruses were tested in viral neutralization assays with an array of broadly neutralizing monoclonal antibodies (mAbs: b12, PG9,16, PGT121 - 128, PGT130 - 131, PGT135 - 137, PGT141 - 145, and PGV04). We correlated IC50 titers with the envelope sequences, and used this information to predict antibody epitope networks. Structural patches were defined as amino acid groups based on solvent-accessibility, radius, atomic depth, and interaction networks within 3D envelope models. We applied a boosted algorithm consisting of multiple machine-learning and statistical models to evaluate these patches as possible antibody epitope regions, evidenced by strong correlations with the neutralization response for each antibody. Results We identified patch clusters with significant correlation to IC50 titers as sites that impact neutralization sensitivity and therefore are potentially part of the antibody binding sites. Predicted epitope networks were mostly located within the variable loops of the envelope glycoprotein (gp120), particularly in V1/V2. Site-directed mutagenesis experiments involving residues identified as epitope networks across multiple mAbs confirmed association of these residues with loss or gain of neutralization sensitivity. Conclusions Computational methods were implemented to rapidly survey protein structures and predict epitope networks associated with response to individual monoclonal antibodies, which resulted in the identification and deeper understanding of immunological hotspots targeted by broadly neutralizing HIV-1 antibodies.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700