Structure of α-conotoxin BuIA: influences of disulfide connectivity on structural dynamics
详细信息    查看全文
  • 作者:Ai-Hua Jin (1)
    Hemma Brandstaetter (1)
    Simon T Nevin (2)
    Chia Chia Tan (1)
    Richard J Clark (1)
    David J Adams (2)
    Paul F Alewood (1)
    David J Craik (1)
    Norelle L Daly (1)
  • 刊名:BMC Structural Biology
  • 出版年:2007
  • 出版时间:December 2007
  • 年:2007
  • 卷:7
  • 期:1
  • 全文大小:1416KB
  • 参考文献:1. Role LW, Berg DK: Nicotinic receptors in the development and modulation of CNS synapses. / Neuron 1996,16(6):1077-085. CrossRef
    2. Jones S, Sudweeks S, Yakel JL: Nicotinic receptors in the brain: correlating physiology with function. / Trends Neurosci 1999,22(12):555-61. CrossRef
    3. Mazurov A, Hauser T, Miller CH: Selective alpha7 nicotinic acetylcholine receptor ligands. / Curr Med Chem 2006,13(13):1567-584. CrossRef
    4. Dutertre S, Lewis RJ: Toxin insights into nicotinic acetylcholine receptors. / Biochem Pharmacol 2006,72(6):661-70. CrossRef
    5. Lustig LR: Nicotinic acetylcholine receptor structure and function in the efferent auditory system. / Anat Rec A Discov Mol Cell Evol Biol 2006,288(4):424-34.
    6. McIntosh JM, Gardner S, Luo S, Garrett JE, Yoshikami D: Conus peptides: novel probes for nicotinic acetylcholine receptor structure and function. / Eur J Pharmacol 2000,393(1-):205-08. CrossRef
    7. Adams DJ, Alewood PF, Craik DJ, Drinkwater RD, Lewis RJ: Conotoxins and their potential pharmaceutical applications. / Drug Dev Res 1999, 46:219-34. CrossRef
    8. Livett BG, Sandall DW, Keays D, Down J, Gayler KR, Satkunanathan N, Khalil Z: Therapeutic applications of conotoxins that target the neuronal nicotinic acetylcholine receptor. / Toxicon 2006,48(7):810-29. CrossRef
    9. McIntosh JM, Santos AD, Olivera BM: Conus peptides targeted to specific nicotinic acetylcholine receptor subtypes. / Ann Rev Biochem 1999, 68:59-8. CrossRef
    10. Dutton JL, Craik DJ: alpha-Conotoxins: nicotinic acetylcholine receptor antagonists as pharmacological tools and potential drug leads. / Curr Med Chem 2001,8(4):327-44.
    11. Balaji RA, Ohtake A, Sato K, Gopalakrishnakone P, Kini RM, Seow KT, Bay BH: lambda-conotoxins, a new family of conotoxins with unique disulfide pattern and protein folding. Isolation and characterization from the venom of Conus marmoreus. / J Biol Chem 2000,275(50):39516-9522. CrossRef
    12. Sharpe IA, Gehrmann J, Loughnan ML, Thomas L, Adams DA, Atkins A, Palant E, Craik DJ, Adams DJ, Alewood PF, Lewis RJ: Two new classes of conopeptides inhibit the alpha1-adrenoceptor and noradrenaline transporter. / Nat Neurosci 2001,4(9):902-07. CrossRef
    13. Gray WR, Luque A, Olivera BM, Barrett J, Cruz LJ: Peptide toxins from Conus geographus venom. / J Biol Chem 1981,256(10):4734-740.
    14. Park KH, Suk JE, Jacobsen R, Gray WR, McIntosh JM, Han KH: Solution conformation of alpha-conotoxin EI, a neuromuscular toxin specific for the alpha 1/delta subunit interface of torpedo nicotinic acetylcholine receptor. / J Biol Chem 2001,276(52):49028-9033. CrossRef
    15. Martinez JS, Olivera BM, Gray WR, Craig AG, Groebe DR, Abramson SN, McIntosh JM: alpha-Conotoxin EI, a new nicotinic acetylcholine receptor antagonist with novel selectivity. / Biochemistry 1995,34(44):14519-4526. CrossRef
    16. Azam L, Dowell C, Watkins M, Stitzel JA, Olivera BM, McIntosh JM: alpha-conotoxin BuIA, a novel peptide from Conus bullatus, distinguishes among neuronal nicotinic acetylcholine receptors. / J Biol Chem 2005,280(1):80-7.
    17. Marx UC, Daly NL, Craik DJ: NMR of conotoxins: structural features and an analysis of chemical shifts of post-translationally modified amino acids. / Magn Reson Chem 2006, 44 Spec No:S41-0. CrossRef
    18. Millard EL, Daly NL, Craik DJ: Structure-activity relationships of alpha-conotoxins targeting neuronal nicotinic acetylcholine receptors. / Eur J Biochem 2004,271(12):2320-326. CrossRef
    19. Wüthrich K: NMR of Proteins and Nucleic Acids. New York , Wiley-Interscience 1986.
    20. Chi SW, Kim DH, Olivera BM, McIntosh JM, Han KH: NMR structure determination of alpha-conotoxin BuIA, a novel neuronal nicotinic acetylcholine receptor antagonist with an unusual 4/4 disulfide scaffold. / Biochem Biophys Res Commun 2006,349(4):1228-234. CrossRef
    21. Dutton JL, Bansal PS, Hogg RC, Adams DJ, Alewood PF, Craik DJ: A new level of conotoxin diversity, a non-native disulfide bond connectivity in alpha-conotoxin AuIB reduces structural definition but increases biological activity. / J Biol Chem 2002,277(50):48849-8857. CrossRef
    22. Hutchinson EG, Thornton JM: PROMOTIF - A program to identify and analyze structural motifs in proteins. / Protein Sci 1996, 5:212-20. CrossRef
    23. Richardson JS: The anatomy and taxonomy of protein structure. / Adv Protein Chem 1981, 34:167-39. CrossRef
    24. Koradi R, Billeter M, Wüthrich K: MOLMOL: a program for display and analysis of macromolecular structures. / J Mol Graph 1996,14(1):51-5. CrossRef
    25. Maslennikov IV, Sobol AG, Gladky KV, Lugovskoy AA, Ostrovsky AG, Tsetlin VI, Ivanov VT, Arseniev AS: Two distinct structures of alpha-conotoxin GI in aqueous solution. / Eur J Biochem 1998,254(2):238-47. CrossRef
    26. Luckett S, Garcia RS, Barker JJ, Konarev AV, Shewry PR, Clarke AR, Brady RL: High-resolution structure of a potent, cyclic proteinase inhibitor from sunflower seeds. / J Mol Biol 1999,290(2):525-33. CrossRef
    27. Celie PHN, Kasheverov IE, Mordvintsev DY, Hogg RC, van Nierop P, van Elk R, van Rossum-Fikkert SE, Zhmak MN, Bertrand D, Tsetlin V, Sixma TK, Smit AB: Crystal structure of nicotinic acetylcholine receptor homolog AChBP in complex with an alpha-conotoxin PnIA variant. / Nat Struct Mol Biol 2005,12(7):582-88. CrossRef
    28. Hansen SB, Sulzenbacher G, Huxford T, Marchot P, Taylor P, Bourne Y: Structures of Aplysia AChBP complexes with nicotinic agonists and antagonists reveal distinctive binding interfaces and conformations. / Embo J 2005,24(20):3635-646. CrossRef
    29. Ulens C, Hogg RC, Celie PH, Bertrand D, Tsetlin V, Smit AB, Sixma TK: Structural determinants of selective alpha-conotoxin binding to a nicotinic acetylcholine receptor homolog AChBP. / Proc Natl Acad Sci U S A 2006,103(10):3615-620. CrossRef
    30. Servent D, Thanh HL, Antil S, Bertrand D, Corringer PJ, Changeux JP, Menez A: Functional determinants by which snake and cone snail toxins block the alpha 7 neuronal nicotinic acetylcholine receptors. / J Physiol Paris 1998,92(2):107-11. CrossRef
    31. Gehrmann J, Alewood PF, Craik DJ: Structure determination of the three disulfide bond isomers for a-conotoxin GI: A model for the role of disulfide bonds in structural stability. / J Mol Biol 1998, 278:401-15. CrossRef
    32. Nilsson KP, Lovelace ES, Caesar CE, Tynngard N, Alewood PF, Johansson HM, Sharpe IA, Lewis RJ, Daly NL, Craik DJ: Solution structure of chi-conopeptide MrIA, a modulator of the human norepinephrine transporter. / Biopolymers 2005,80(6):815-23. CrossRef
    33. Schn?lzer M, Alewood P, Jones A, Alewood D, Kent SBH: In situ neutralization in Boc-chemistry solid phase peptide synthesis. / Int J Pept Protein Res 1992, 40:180-93. CrossRef
    34. Hu SH, Gehrmann J, Guddat LW, Alewood PF, Craik DJ, Martin JL: The 1.1 A crystal structure of the neuronal acetylcholine receptor antagonist, a-conotoxin PnIA from Conus pennaceus. / Structure 1996, 4:417-23. CrossRef
    35. Hu SH, Gehrmann J, Alewood PF, Craik DJ, Martin JL: Crystal structure at 1.1 A resolution of alpha-conotoxin PnIB: comparison with alpha-conotoxins PnIA and GI. / Biochemistry 1997,36(38):11323-1330. CrossRef
    36. Guntert P, Mumenthaler C, Wüthrich K: Torsion angle dynamics for NMR structure calculation with the new program DYANA. / J Mol Biol 1997,273(1):283-98. CrossRef
    37. Brünger AT, Adams PD, Rice LM: New applications of simulated annealing in X-ray crystallography and solution NMR. / Structure 1997,5(3):325-36. CrossRef
    38. Rice LM, Brünger AT: Torsion angle dynamics: reduced variable conformational sampling enhances crystallographic structure refinement. / Proteins 1994,19(4):277-90. CrossRef
    39. Linge JP, Nilges M: Influence of non-bonded parameters on the quality of NMR structures: a new force field for NMR structure calculation. / J Biomol NMR 1999,13(1):51-9. CrossRef
    40. Laskowski RA, Rullmannn JA, MacArthur MW, Kaptein R, Thornton JM: AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. / J Biomol NMR 1996,8(4):477-86. CrossRef
    41. McIntosh JM, Yoshikami D, Mahe E, Nielsen DB, Rivier JE, Gray WR, Olivera BM: A nicotinic acetylcholine receptor ligand of unique specificity, alpha-conotoxin ImI. / J Biol Chem 1994,269(24):16733-6739.
    42. Fainzilber M, Hasson A, Oren R, Burlingame AL, Gordon D, Spira ME, Zlotkin E: New mollusc-specific alpha-conotoxins block Aplysia neuronal acetylcholine receptors. / Biochemistry 1994,33(32):9523-529. CrossRef
    43. Luo S, Kulak JM, Cartier GE, Jacobsen RB, Yoshikami D, Olivera BM, McIntosh JM: alpha-conotoxin AuIB selectively blocks alpha3 beta4 nicotinic acetylcholine receptors and nicotine-evoked norepinephrine release. / J Neurosci 1998,18(21):8571-579.
  • 作者单位:Ai-Hua Jin (1)
    Hemma Brandstaetter (1)
    Simon T Nevin (2)
    Chia Chia Tan (1)
    Richard J Clark (1)
    David J Adams (2)
    Paul F Alewood (1)
    David J Craik (1)
    Norelle L Daly (1)

    1. Institute for Molecular Bioscience, Australian Research Council Special Research Centre for Functional and Applied Genomics, The University of Queensland, Brisbane, QLD 4072, Australia
    2. School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
  • ISSN:1472-6807
文摘
Background α-Conotoxins have exciting therapeutic potential based on their high selectivity and affinity for nicotinic acetylcholine receptors. The spacing between the cysteine residues in α-conotoxins is variable, leading to the classification of sub-families. BuIA is the only α-conotoxin containing a 4/4 cysteine spacing and thus it is of significant interest to examine the structure of this conotoxin. Results In the current study we show the native globular disulfide connectivity of BuIA displays multiple conformations in solution whereas the non-native ribbon isomer has a single well-defined conformation. Despite having multiple conformations in solution the globular form of BuIA displays activity at the nicotinic acetylcholine receptor, contrasting with the lack of activity of the structurally well-defined ribbon isomer. Conclusion These findings are opposite to the general trends observed for α-conotoxins where the native isomers have well-defined structures and the ribbon isomers are generally disordered. This study thus highlights the influence of the disulfide connectivity of BuIA on the dynamics of the three-dimensional structure.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700