The Microstructure and Physicochemical Properties of Probiotic Buffalo Yoghurt During Fermentation and Storage: a Comparison with Bovine Yoghurt
详细信息    查看全文
  • 作者:Hanh Thi Hong Nguyen (1) (2)
    Lydia Ong (1) (2)
    Christophe Lefèvre (3)
    Sandra Elizabeth Kentish (1)
    Sally Louise Gras (1) (2)
  • 关键词:Buffalo yoghurt ; Syneresis ; Organic acid ; Gel firmness ; Microstructure ; Rheological properties
  • 刊名:Food and Bioprocess Technology
  • 出版年:2014
  • 出版时间:April 2014
  • 年:2014
  • 卷:7
  • 期:4
  • 页码:937-953
  • 全文大小:1,207 KB
  • 参考文献:1. Abd El-Salam, M. H. (1978). Comparative study of the composition of casein micelles from buffalo and cow milk. / Egypt Journal of Dairy Science, 6, 1-.
    2. Abu-Jdayil, B., & Mohameed, H. (2002). Experimental and modelling studies of the flow properties of concentrated yogurt as affected by the storage time. / Journal of Food Engineering, 52(4), 359-65. CrossRef
    3. Addeo, F., Alloisio, V., & Chianese, L. (2007). Tradition and innovation in the water buffalo dairy products. / Italian Journal of Animal Science, 6, 51-7.
    4. Adhikari, K., Grun, I. U., Mustapha, A., & Fernando, L. N. (2002). Changes in the profile of organic acids in plain set and stirred yogurts during manufacture and refrigerated storage. / Journal of Food Quality, 25(5), 435-51. CrossRef
    5. Ahmad, S., Gaucher, I., Rousseau, F., Beaucher, E., Piot, M., Grongnet, J. F., et al. (2008). Effects of acidification on physicochemical characteristics of buffalo milk: A comparison with cow's milk. / Food Chemistry, 106(1), 11-7. CrossRef
    6. AOAC. (2006). / Official methods of analysis. Washington: Association of Official Analytical Chemists.
    7. Atwood, C. S., & Hartmann, P. E. (1992). Collection of fore and hind milk from the sow and the changes in milk-composition during suckling. / The Journal of Dairy Research, 59, 287-98. CrossRef
    8. Australia New Zealand Food Standards (2006) Fermented milk products F2011C00622, Standard 2.5.3.
    9. Bezerra, M. F., Souza, D. F. S., & Correia, R. T. P. (2012). Acidification kinetics, physiochemical properties, and sensory attributes of yoghurts prepared from mixtures of goat and buffalo milks. / International Journal of Dairy Technology, 65(3), 437-43. CrossRef
    10. Bozanic, R. (2002). Fermentation and storage of probiotic yoghurt from goat's milk. / Mljekarstvo, 52, 93.
    11. Bozanic, R., Lovkovic, S., & Jelicic, I. (2011). Optimising fermentation of soymilk with probiotic bacteria. / Czech Journal of Food Sciences, 29(1), 51-6.
    12. Braun, P. G., & Preuss, S. E. (2008). Nutritional composition and chemico-physicai parameters of water buffalo milk and milk products in Germany. / Milchwissenschaft Milk Science International, 63(1), 70-2.
    13. Chawla, A. K., & Balachandran, R. (1994). Studies on yoghurt buffalo milk: Effect of different solid nonfat content on chemical, rheological and sensory characteristics. / Indian Journal of Dairy Science, 47(9), 762-65.
    14. Cunha-Neto, O. C., Olivera, A. A. F., Hotta, R. M., & Sorbal, P. J. A. (2005). Physico-chemical and sensory evaluation of plain yoghurt manufactured from buffalo milk with different fat content. / Science and Technology of Agriculture, 25(3), 448-53.
    15. Dairy Australia (2010) Consumption summary for year 2009-010. Production and sale. Available at: www.dairyaustralia.com.au. Accessed 30 November 2011.
    16. Damin, M. R., Minowa, E., Alcantara, M. R., & Oliveira, M. N. (2008). Effect of cold storage on culture viability and some rheological properties of fermented milk prepared with yogurt and probiotic bacteria. / Journal of Texture Studies, 39(1), 40-5. CrossRef
    17. Dave, R. I., & Shah, N. P. (1997). Effect of level of starter culture on viability of yoghurt and probiotic bacteria in yoghurts. / Food Australia, 49(4), 164-68.
    18. Domagala, J. (2009). Instrumental texture, syneresis and microstructure of yoghurts prepared from goat, cow and sheep Milk. / International Journal of Food Properties, 12(3), 605-15. CrossRef
    19. Donkor, O. N., Tsangalis, D., & Shah, N. P. (2007). Viability of probiotic bacteria and concentrations of organic acids in commercial yoghurts during refrigerated storage. / Food Australia, 59(4), 121-26.
    20. El-Dieb, S. M., Abd Rabo, F. H. R., Badran, S. M., Abd El-Fattah, A. M., & Elshaghabee, F. M. F. (2012). The growth behaviour and enhancement of probiotic viability in bioyoghurt. / International Dairy Journal, 22(1), 44-7. CrossRef
    21. Erkaya, T., & Sengul, M. (2011). Comparison of volatile compounds in yoghurts made from cows', buffaloes', ewes' and goats' milks. / International Journal of Dairy Technology, 64(2), 240-46. CrossRef
    22. Fernandezgarcia, E., & McGregor, J. U. (1994). Determination of organic-acids during the fermentation and cold-storage of yogurt. / Journal of Dairy Science, 77(10), 2934-939. CrossRef
    23. Ghadge, P. N. (2008). Effect of fortification on the physico-chemical and sensory properties of Buffalo milk yoghurt. / Electronic Journal of Environmental Agricultural and Food Chemistry, Electronic journal of environmental, agricultural and food chemistry, 7(5), 2890.
    24. Gilliland, S. E., & Lara, R. C. (1988). Influence of storage at freezing and subsequent refrigeration temperatures on beta-galactosidase activity of / Lactobacillus-acidophilus. / Applied and Environmental Microbiology, 54(4), 898-02.
    25. Gosling, A., Alftren, J., Stevens, G. W., Barber, A. R., Kentish, S. E., & Gras, S. L. (2009). Facile pretreatment of / Bacilius circulans beta-galactosidase increases the yield of galactosyl oligosaccharides in milk and lactose reaction systems. / Journal of Agricultural and Food Chemistry, 57(24), 11570-1574. CrossRef
    26. Gun, O., & Isikli, N. (2006). The effects of fat and non fat dry matter concentration and storage time on the physical properties and acidity of yoghurts made with probiotic cultures. / Food Science and Technology International, 12(6), 467-76. CrossRef
    27. Gundogdu, E., Cakmakci, S., & Dagdemir, E. (2009). The effect of garlic ( / Allium sativum L.) on some quality properties and shelf-life of set and stirred yoghurt. / Turkish Journal of Veterinary and Animal Sciences, 33(1), 27-5.
    28. Haque, A., Richardson, R. K., & Morris, E. R. (2001). Effect of fermenation temperature on the rheology of set and stirred yogurt. / Food Hydrocolloids, 15, 593-02. CrossRef
    29. Jensen, R. G. (1995). / Handbook of milk composition. San Diego: Academic Press.
    30. Keogh, K. M., & O’Kennedy, B. T. (1998). Rheology of stirred yoghurt as affected by added milk fat, protein and hydrocolloids. / Journal of Food Science, 63, 108-12. CrossRef
    31. Khanna, A., & Singh, J. (1979). A comparison of yoghurt starter in cow's and buffalo milk. / The Journal of Dairy Research, 46(04), 681. CrossRef
    32. Kumar, P., & Mishra, H. N. (2003). Effect of mango pulp and soymilk fortification on the texture profile of set yoghurt made from buffalo milk. / Journal of Texture Studies, 34(3), 249-69. CrossRef
    33. Larson, B. L., & Hegarty, H. M. (1979). Orotic acid in milks of various species and commercial dairy-products. / Journal of Dairy Science, 62(10), 1641-644. CrossRef
    34. Lee, W. J., & Lucey, J. A. (2003). Rheological properties, whey separation, and microstructure in set-style yogurt: Effects of heating temperature and incubation temperature. / Journal of Texture Studies, 34(5-), 515-36. CrossRef
    35. Lee, W. J., & Lucey, J. A. (2004a). Effect of starter inoculation rates and incubation temperatures on physical properties of yogurt. / Journal of Animal Science, 82, 93-3.
    36. Lee, W. J., & Lucey, J. A. (2004b). Structure and physical properties of yogurt gels: Effect of inoculation rate and incubation temperature. / Journal of Dairy Science, 87(10), 3153-164. CrossRef
    37. Lee, W. J., & Lucey, J. A. (2010). Formation and physical properties of yoghurt. / Asian-Australasian Journal of Animal Sciences, 23(9), 1127-136. CrossRef
    38. Lewis, M. J. (2011). The measurement and significance of ionic calcium in milk - A review. / International Journal of Dairy Technology, 64(1), 1-3. CrossRef
    39. Lin, M. J., Lewis, M. J., & Grandison, A. S. (2006). Measurement of ionic calcium in milk. / International Journal of Dairy Technology, 59(3), 192-99. CrossRef
    40. Lucey, J., Tamehana, M., Singh, H., & Munro, P. (1998). A comparison of the formation, rheological properties and microstructure of acid skim milk gels made with a bacterial culture or glucono-delta-lactone. / Food Research International, 31(2), 147-55. CrossRef
    41. Marafon, A. P., Sumi, A., Alcantara, M. R., Tamime, A. Y., & de Oliveira, M. N. (2011). Optimization of the rheological properties of probiotic yoghurts supplemented with milk proteins. / LWT- Food Science and Technology, 44(2), 511-19. CrossRef
    42. Mekmene, O., Le Graet, Y., & Gaucheron, F. (2010). Theoretical model for calculating ionic equilibria in milk as a function of pH: comparison to experiment. / Journal of Agricultural and Food Chemistry, 58(7), 4440-447. CrossRef
    43. Menard, O., Ahmad, S., Rousseau, F., Briard-Bion, V., Gaucheron, F., & Lopez, C. (2010). Buffalo vs. cow milk fat globules: Size distribution, zeta-potential, compositions in total fatty acids and in polar lipids from the milk fat globule membrane. / Food Chemistry, 120(2), 544-51. CrossRef
    44. Nahar, A., Amin, M. A., Alam, S. M. K., Wadud, A., & Islam, M. N. (2007). A comparative study on the quality of Dahi (yoghurt) prepapared from cow, goat and buffalo milk. / International Journal of Dairy Science, 2(3), 260-67. CrossRef
    45. Okonkwo, P., & Kinsella, J. E. (1969). Orotic acid in yoghurt. / Journal of Dairy Science, 52(11), 1861-862. CrossRef
    46. Oliveira, M. N., Sodini, I., Remeuf, F., & Corrieu, G. (2001). Effect of milk supplementation and culture composition on acidification, textural properties and microbiological stability of fermented milks containing probiotic bacteria. / International Dairy Journal, 11(11-2), 935-42. CrossRef
    47. Ong, L., Dagastine, R. R., Kentish, S. E., & Gras, S. L. (2010). The effect of milk processing on the microstructure of the milk fat globule and rennet induced gel observed using confocal laser scanning microscopy. / Journal of Food Science, 75, 135-45. CrossRef
    48. Ong, L., Dagastine, R. R., Kentish, S. E., & Gras, S. L. (2011). Microstructure of milk gel and cheese curd observed using cryo scanning electron microscopy and confocal microscopy. / LWT- Food Science and Technology, 44(5), 1291-302. CrossRef
    49. Ong, L., Dagastine, R. R., Kentish, S. E., & Gras, S. L. (2012). The effect of pH at renneting on the microstructure, composition and texture of Cheddar cheese. / Food Research International, 48, 119-30. CrossRef
    50. Ozer, B. H., & Kirmaci, H. A. (2010). Functional milks and dairy beverages. / International Journal of Dairy Technology, 63(1), 1-5. CrossRef
    51. Pandya, N., Kanawjia, S., & Dave, R. (2004). Effects of fat content on physico-chemical and sensory properties of buffalo milk dahi (yoghurt). / Journal of Animal Science, 82, 236-36.
    52. Pesce, M. A., & Strande, C. S. (1973). New micromethod for determination of protein in cerebrospinal-fluid and urine. / Clinical Chemistry, 19, 1265-267.
    53. Prakash, B. S., & Sharma, R. S. (1986). Orotic acid in milk and milk products. / Journal of Food Science and Technology Mysore, 23(2), 85-7.
    54. Priya, A. J., Vijayalakshmi, S. P., & Raichui, A. M. (2011). Enhanced survival of probiotic / Lactobacillus acidophilus by encapsulation with nanostructured polyelectrolyte layers through layer-by-layer approach. / Journal of Agricultural and Food Chemistry, 59(21), 11838-1845. CrossRef
    55. Purwandari, U., & Vasiljevic, T. (2009). Rheological properties of fermented milk produced by a single exopolysaccharide producing / Streptococcus thermophilus strain in the presence of added calcium and sucrose. / International Journal of Dairy Technology, 62(3), 411-21. CrossRef
    56. Purwandari, U., Shah, N. P., & Vasiljevic, T. (2007). Effects of exopolysaccharide-producing strains of / Streptococcus thermophilus on technological and rheological properties of set-type yoghurt. / International Dairy Journal, 17(11), 1344-352. CrossRef
    57. Raju, P., & Pal, D. (2009). The physico-chemical, sensory, and textural properties of misti dahi prepared from reduced fat buffalo milk. / Food and Bioprocess Technology, 2(1), 101-08. CrossRef
    58. Rao, M. A. (2007). / Rheology of fluid and semisolid foods: principles and applications. Rheology of fluid and semisolid foods: principles and applications (2nd ed.). New York: Springer.
    59. Robinson, R. K., & Haddadin, M. S. Y. (2010). Improving the safety and quality of milk, volume 2: improving quality in milk products. In M. W. Griffiths (Ed.), / Improving the safety and quality of milk, volume 2: Improving quality in milk products. Cambridge: Woodhead Ltd.
    60. Saccaro, D. M., Tamime, A. Y., Pilleggi, A., & Oliveira, M. N. (2009). The viability of three probiotic organisms grown with yoghurt starter cultures during storage for 21?days at 4 degrees C. / International Journal of Dairy Technology, 62(3), 397-04. CrossRef
    61. Salvador, A., & Fiszman, S. M. (2004). Textural and sensory characteristics of whole and skimmed flavored set-type yogurt during long storage. / Journal of Dairy Science, 87(12), 4033-041. CrossRef
    62. Shiby, V. K., & Mishra, H. N. (2008). Modelling of acidification kinetics and textural properties in dahi (Indian yogurt) made from buffalo milk using response surface methodology. / International Journal of Dairy Technology, 61(3), 284-89. CrossRef
    63. Sikka, P., Saxena, N. K., Gupta, R., Sethi, R. K., & Lall, D. (2001). Studies on milk allantoin and uric acid in relation to feeding regimens and production performance in buffaloes. / Asian-Australasian Journal of Animal Sciences, 14(11), 1634-637.
    64. Tamime, A. Y., & Robinson, R. K. (2007). Yoghurt: Science and technology, Third Edition. In A. Y. Tamime & R. K. Robinson (Eds.), / Tamime and Robinsons Yoghurt: Science and Technology (3rd ed.). Cambridge: Woodhead Publ Ltd. CrossRef
    65. Tan, W. S., Budinich, M. F., Ward, R., Broadbent, J. R., & Steele, J. L. (2012). Optimal growth of / Lactobacillus casei in a Cheddar cheese ripening model system requires exogenous fatty acids. / Journal of Dairy Science, 95(4), 1680-689. CrossRef
    66. Thi, M. P. N., Lee, Y. K., & Zhou, W. B. (2012). Effect of high intensity ultrasound on carbohydrate metabolism of bifidobacteria in milk fermentation. / Food Chemistry, 130(4), 866-74. CrossRef
    67. Tormo, M., & Izco, J. M. (2004). Alternative reversed-phase high-performance liquid chromatography method to analyse organic acids in dairy products. / Journal of Chromatography. A, 1033(2), 305-10. CrossRef
    68. Varricchio, M. L., Di Francia, A., Masucci, F., Romano, R., & Proto, V. (2007). Fatty acid composition of Mediterranean buffalo milk fat. / Italian Journal of Animal Science, 6, 509-11.
    69. Venkatappaiah, D., & Basu, K. P. (1952). Non-protein nitrogenous constituents of milk. I. Variation due to species, breed, individuality, season and stage of lactation. / Indian Journal of Dairy Science, 5(2), 95-16.
    70. Wishon, L. M., Song, D. F., & Ibrahim, S. A. (2010). Effect of metals on growth and functionality of Lactobacillus and Bifidobacteria. / Milchwissenschaft-Milk Science International, 65(4), 369-72.
    71. Yadav, H., Jain, S., & Sinha, P. R. (2007). Evaluation of changes during storage of probiotic dahi at 7 degrees C. / International Journal of Dairy Technology, 60(3), 205-10. CrossRef
    72. Yazici, F., & Akbulut, C. (2007). Impact of whey pH at drainage on the physicochemical, sensory, and functional properties of Mozzarella cheese made from buffalo milk. / Journal of Agricultural and Food Chemistry, 55(24), 9993-0000. CrossRef
  • 作者单位:Hanh Thi Hong Nguyen (1) (2)
    Lydia Ong (1) (2)
    Christophe Lefèvre (3)
    Sandra Elizabeth Kentish (1)
    Sally Louise Gras (1) (2)

    1. Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
    2. The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
    3. Institute for Technology Research and Innovation, Deakin University, Geelong, Victoria, 3220, Australia
  • ISSN:1935-5149
文摘
The physicochemical and rheological properties of yoghurt made from unstandardised unhomogenised buffalo milk were investigated during fermentation and 28?days of storage and compared to the properties of yoghurt made from homogenised fortified bovine milk. A number of differences observed in the gel network can be linked to differences in milk composition. The microstructure of buffalo yoghurt, as assessed by confocal laser scanning microscopy (CLSM) and cryo scanning electron microscopy (cryo-SEM), was interrupted by large fat globules and featured more serum pores. These fat globules have a lower surface area and bind less protein than the homogenised fat globules in bovine milk. These microstructural differences likely lead to the higher syneresis observed for buffalo yoghurt with an increase from 17.4?% (w/w) to 19.7?% (w/w) in the weight of whey generated at days?1 and 28 of the storage. The higher concentration of total calcium in buffalo milk resulted in the release of more ionic calcium during fermentation. Gelation was also slower but the strength of the two gels was similar due to similar protein and total solids concentrations. Buffalo yoghurt was more viscous, less able to recover from deformation and less Newtonian than bovine yoghurt with a thixotropy of 3,035?Pa.s? measured for buffalo yoghurt at the end of the storage, at least four times higher than the thixotropy of bovine yoghurt. While the titratable acidity, lactose consumption and changes in organic acid concentrations were similar, differences were recorded in the viability of probiotic bacteria with a lower viability of Lactobacillus acidophilus of 5.17?log (CFU/g) recorded for buffalo yoghurt at day?28 of the storage. Our results show that factors other than the total solids content and protein concentration of milk affect the structural properties of yoghurt. They also illustrate the physicochemical reasons why buffalo and bovine yoghurt are reported to have different sensory properties and provide insight into how compositional changes can be used to alter the microstructure and properties of dairy products.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700