Genes controlling root development in rice
详细信息    查看全文
  • 作者:Chung D Mai (1) (2)
    Nhung TP Phung (1) (3) (4)
    Huong TM To (2)
    Mathieu Gonin (3)
    Giang T Hoang (1) (2)
    Khanh L Nguyen (2) (3)
    Vinh N Do (1)
    Brigitte Courtois (4)
    Pascal Gantet (2) (3) (5)

    1. Agricultural Genetic Institute
    ; LMI RICE ; Hanoi ; Vietnam
    2. University of Science and Technology of Hanoi
    ; LMI RICE ; Hanoi ; Vietnam
    3. IRD
    ; UMR DIADE ; LMI RICE ; Hanoi ; Vietnam
    4. CIRAD
    ; UMR AGAP ; Montpellier ; France
    5. Universit茅 Montpellier 2
    ; UMR DIADE ; Montpellier ; France
  • 关键词:Rice ; Crown root ; Lateral root ; Branching ; QTL mapping ; Association mapping ; Gene cloning ; Direct genetics ; Reverse genetics
  • 刊名:Rice
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:7
  • 期:1
  • 全文大小:740 KB
  • 参考文献:1. Abe, M, Kuroshita, H, Umeda, M, Itoh, J, Nagato, Y (2008) The rice flattened shoot meristem, encoding CAF-1 p150 subunit, is required for meristem maintenance by regulating the cell-cycle period. Dev Biol 319: pp. 384-393
    2. Bailey-Serres, J, Fukao, T, Ronald, P, Ismail, A, Heuer, S, Mackill, D (2010) Submergence tolerant rice: SUB1鈥檚 journey from landrace to modern cultivar. Rice 3: pp. 138-147
    3. Bian, H, Xie, Y, Guo, F, Han, N, Ma, S, Zeng, Z, Wang, J, Yang, Y, Zhu, M (2012) Distinctive expression patterns and roles of the miRNA393/TIR1 homolog module in regulating flag leaf inclination and primary and crown root growth in rice (Oryza sativa). New Phytol 196: pp. 149-161
    4. Breuninger, H, Rikirsch, E, Hermann, M, Ueda, M, Laux, T (2008) Differential expression of WOX genes mediates apical-basal axis formation in the Arabidopsis embryo. Dev Cell 14: pp. 867-876
    5. Champoux, M, Wang, G, Sarkarung, S, Mackill, DJ, O鈥橳oole, JC, Huang, N, McCouch, SR (1995) Locating genes associated with root morphology and drought avoidance in rice via linkage to molecular marker. Theor Appl Genet 90: pp. 969-981
    6. Chen, JS, Lin, SC, Chen, CY, Hsieh, YT, Pai, PH, Chen, LK, Lee, S (2014) Development of a microarray for two rice subspecies: characterization and validation of gene expression in rice tissues. BMC Res Notes 7: pp. 15
    7. Chen, X, Shi, J, Hao, X, Liu, H, Wu, Y, Wu, Z, Chen, M, Wu, P, Mao, C (2013) OsORC3 is required for lateral root development in rice. Plant J 74: pp. 339-350
    8. Chen, YH, Chao, YY, Hsu, YY, Hong, CY, Kao, CH (2012) Heme oxygenase is involved in nitric oxide- and auxin-induced lateral root formation in rice. Plant Cell Rep 31: pp. 1085-1091
    9. Cheng, Y, Dai, X, Zhao, Y (2004) AtCAND1, a HEAT-repeat protein that participates in auxin signaling in Arabidopsis. Plant Physiol 135: pp. 1020-1026
    10. Cho, SH, Yoo, SC, Zhang, H, Pandeya, D, Koh, HJ, Hwang, JY, Kim, GT, Paek, NC (2013) The rice narrow leaf2 and narrow leaf3 loci encode WUSCHEL-related homeobox 3A (OsWOX3A) and function in leaf, spikelet, tiller and lateral root development. New Phytol 198: pp. 1071-1084
    11. Chu, H, Liang, W, Li, J, Hong, F, Wu, Y, Wang, L, Wang, J, Wu, P, Liu, C, Zhang, Q, Xu, J, Zhang, D (2013) A CLE-WOX signalling module regulates root meristem maintenance and vascular tissue development in rice. J Exp Bot 64: pp. 5359-5369
    12. Clark, RT, Famoso, AN, Zhao, K, Shaff, JE, Craft, EJ, Bustamante, CD, McCouch, SR, Aneshansley, DJ, Kochian, LV (2013) High-throughput two-dimensional root system phenotyping platform facilitates genetic analysis of root growth and development. Plant Cell Environ 36: pp. 454-466
    13. Coudert, Y, Bes, M, Thi, VA, Pre, M, Guiderdoni, E, Gantet, P (2011) Transcript profiling of crown root less 1 stem base reveals new elements associated with crown root development in rice. BMC Genomics 12: pp. e387
    14. Coudert, Y, Dievart, A, Droc, G, Gantet, P (2013) ASL/LBD phylogeny suggests that genetic mechanisms of root initiation downstream of auxin are distinct in lycophytes and euphyllophytes. Mol Biol Evol 30: pp. 569-572
    15. Coudert, Y, Thi, VA, Gantet, P Rice: a model plant to decipher the hidden origin of adventitious roots. In: Eshel, A, Beeckman, T eds. (2013b) Plant roots: the hidden half. CCR press, Taylor and Francis group, LLC, Boca Raton, USA, pp. 157-166
    16. Coudert, Y, Perin, C, Courtois, B, Khong, NG, Gantet, P (2010) Genetic control of root development in rice, the model cereal. Trends Plant Sci 15: pp. 219-226
    17. Courtois, B, Ahmadi, N, Khowaja, F, Price, AH, Rami, J-F, Frouin, J, Hamelin, C, Ruiz, M (2009) Rice root genetic architecture: meta-analysis from a drought QTL database. Rice 2: pp. 115-128
    18. Courtois, B, Audebert, A, Dardou, A, Roques, S, Ghneim-Herrera, T, Droc, G, Frouin, J, Rouan, L, Goze, E, Kilian, A, Ahmadi, N, Dingkuhn, M (2013) Genome-wide association mapping of root traits in a japonica rice panel. PLoS One 8: pp. e78037
    19. Cui, H, Levesque, MP, Vernoux, T, Jung, JW, Paquette, AJ, Gallagher, KL, Wang, JY, Blilou, I, Scheres, B, Benfey, PN (2007) An evolutionarily conserved mechanism delimiting SHR movement defines a single layer of endodermis in plants. Science 316: pp. 421-425
    20. Herder, G, Isterdael, G, Beeckman, T, Smet, I (2010) The roots of a new green revolution. Trends Plant Sci 15: pp. 600-607
    21. Laurenzio, L, Wysocka-Diller, J, Malamy, JE, Pysh, L, Helariutta, Y, Freshour, G, Hahn, MG, Feldmann, KA, Benfey, PN (1996) The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root. Cell 86: pp. 423-433
    22. Ditengou, FA, Teale, WD, Kochersperger, P, Flittner, KA, Kneuper, I, Graaff, E, Nziengui, H, Pinosa, F, Li, X, Nitschke, R, Laux, T, Palme, K (2008) Mechanical induction of lateral root initiation in Arabidopsis thaliana. Proc Natl Acad Sci U S A 105: pp. 18818-18823
    23. Fukai, S, Cooper, M (1995) Development of drought resistant cultivars using physio-morphological traits in rice. Field Crops Res 40: pp. 67-87
    24. Gamuyao, R, Chin, JH, Pariasca-Tanaka, J, Pesaresi, P, Catausan, S, Dalid, C, Slamet-Loedin, I, Tecson-Mendoza, EM, Wissuwa, M, Heuer, S (2012) The protein kinase Pstol1 from traditional rice confers tolerance of phosphorus deficiency. Nature 488: pp. 535-539
    25. Gowda, VRP, Henry, A, Yamauchi, A, Shashidhar, HE, Serraj, R (2011) Root biology and genetic improvement for drought avoidance in rice. Field Crop Res 122: pp. 1-13
    26. Guiderdoni, E, Gantet, P (2012) Ac-Ds solutions for rice insertion mutagenesis. Methods Mol Biol 859: pp. 177-187
    27. Guilfoyle, TJ, Hagen, G (2007) Auxin response factors. Curr Opin Plant Biol 10: pp. 453-460
    28. Hirochika, H, Guiderdoni, E, An, G, Hsing, YI, Eun, MY, Han, CD, Upadhyaya, N, Ramachandran, S, Zhang, Q, Pereira, A, Sundaresan, V, Leung, H (2004) Rice mutant resources for gene discovery. Plant Mol Biol 54: pp. 325-334
    29. Hochholdinger, F, Tuberosa, R (2009) Genetic and genomic dissection of maize root development and architecture. Curr Opin Plant Biol 12: pp. 172-177
    30. Hsu, YY, Chao, YY, Kao, CH (2012) Methyl jasmonate-induced lateral root formation in rice: The role of heme oxygenase and calcium. Journal of plant physiol 170: pp. 63-69
    31. Huang, CF, Yamaji, N, Nishimura, M, Tajima, S, Ma, JF (2009) A rice mutant sensitive to Al toxicity is defective in the specification of root outer cell layers. Plant Cell Physiol 50: pp. 976-985
    32. Huang, CF, Yamaji, N, Ono, K, Ma, JF (2012) A leucine-rich repeat receptor-like kinase gene is involved in the specification of outer cell layers in rice roots. Plant J 69: pp. 565-576
    33. Inukai, Y, Sakamoto, T, Ueguchi-Tanaka, M, Shibata, Y, Gomi, K, Umemura, I, Hasegawa, Y, Ashikari, M, Kitano, H, Matsuoka, M (2005) Crown rootless1, which is essential for crown root formation in rice, is a target of an AUXIN RESPONSE FACTOR in auxin signaling. Plant Cell 17: pp. 1387-1396
    34. Itoh, J, Nonomura, K, Ikeda, K, Yamaki, S, Inukai, Y, Yamagishi, H, Kitano, H, Nagato, Y (2005) Rice plant development: from zygote to spikelet. Plant Cell Physiol 46: pp. 23-47
    35. Itoh, T, Tanaka, T, Barrero, RA, Yamasaki, C, Fujii, Y, Hilton, PB, Antonio, BA, Aono, H, Apweiler, R, Bruskiewich, R, Bureau, T, Burr, F, Costa de Oliveira, A, Fuks, G, Habara, T, Haberer, G, Han, B, Harada, E, Hiraki, AT, Hirochika, H, Hoen, D, Hokari, H, Hosokawa, S, Hsing, YI, Ikawa, H, Ikeo, K, Imanishi, T, Ito, Y, Jaiswal, P, Kanno, M, Kawahara, Y, Kawamura, T, Kawashima, H, Khurana, JP, Kikuchi, S, Komatsu, S, Koyanagi, KO, Kubooka, H, Lieberherr, D, Lin, YC, Lonsdale, D, Matsumoto, T, Matsuya, A, McCombie, WR, Messing, J, Miyao, A, Mulder, N, Nagamura, Y, Nam, J, Namiki, N, Numa, H, Nurimoto, S, O鈥橠onovan, C, Ohyanagi, H, Okido, T, Oota, S, Osato, N, Palmer, LE, Quetier, F, Raghuvanshi, S, Saichi, N, Sakai, H, Sakai, Y, Sakata, K, Sakurai, T, Sato, F, Sato, Y, Schoof, H, Seki, M, Shibata, M, Shimizu, Y, Shinozaki, K, Shinso, Y, Singh, NK, Smith-White, B, Takeda, J, Tanino, M, Tatusova, T, Thongjuea, S, Todokoro, F, Tsugane, M, Tyagi, AK, Vanavichit, A, Wang, A, Wing, RA, Yamaguchi, K, Yamamoto, M, Yamamoto, N, Yu, Y, Zhang, H, Zhao, Q, Higo, K, Burr, B, Gojobori, T, Sasaki, T (2007) Curated genome annotation of Oryza sativa ssp. japonica and comparative genome analysis with Arabidopsis thaliana. Genome Res 17: pp. 175-183
    36. Jeong, JS, Kim, YS, Baek, KH, Jung, H, Ha, SH, Do Choi, Y, Kim, M, Reuzeau, C, Kim, JK (2010) Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiol 153: pp. 185-197
    37. Jeong, JS, Kim, YS, Redillas, MC, Jang, G, Jung, H, Bang, SW, Choi, YD, Ha, SH, Reuzeau, C, Kim, JK (2013) OsNAC5 overexpression enlarges root diameter in rice plants leading to enhanced drought tolerance and increased grain yield in the field. Plant Biotechnol J 11: pp. 101-114
    38. Jia, L, Wu, Z, Hao, X, Carrie, C, Zheng, L, Whelan, J, Wu, Y, Wang, S, Wu, P, Mao, C (2011) Identification of a novel mitochondrial protein, short postembryonic roots 1 (SPR1), involved in root development and iron homeostasis in Oryza sativa. New Phytol 189: pp. 843-855
    39. Jun, N, Gaohang, W, Zhenxing, Z, Huanhuan, Z, Yunrong, W, Ping, W (2011) OsIAA23-mediated auxin signaling defines postembryonic maintenance of QC in rice. Plant J 68: pp. 433-442
    40. Kamiya, N, Itoh, J, Morikami, A, Nagato, Y, Matsuoka, M (2003) The SCARECROW gene鈥檚 role in asymmetric cell divisions in rice plants. Plant J 36: pp. 45-54
    41. Kamiya, N, Nagasaki, H, Morikami, A, Sato, Y, Matsuoka, M (2003) Isolation and characterization of a rice WUSCHEL-type homeobox gene that is specifically expressed in the central cells of a quiescent center in the root apical meristem. Plant J 35: pp. 429-441
    42. Kamoshita, A, Chandra Babu, R, Boopathi, MN, Fukai, S (2008) Phenotypic and genotypic analysis of drought-resistance traits for development of rice cultivars adapted to rainfed environments. Field Crop Research 109: pp. 1-23
    43. Kamoshita, A, Zhang, J, Siopongco, J, Sarkarung, S, Nguyen, HT, Wade, LJ (2002) Effects of phenotyping environment on identification of quantitative trait loci for rice root morphology under anaerobic conditions. Crop Sci 42: pp. 255-265
    44. Kang, B, Zhang, Z, Wang, L, Zheng, L, Mao, W, Li, M, Wu, Y, Wu, P, Mo, X (2013) OsCYP2, a chaperone involved in degradation of auxin-responsive proteins, plays crucial roles in rice lateral root initiation. Plant J 74: pp. 86-97
    45. Khowaja, FS, Norton, GJ, Courtois, B, Price, AH (2009) Improved resolution in the position of drought-related QTLs in a single mapping population of rice by meta-analysis. BMC Genomics 10: pp. e276
    46. Kitomi, Y, Inahashi, H, Takehisa, H, Sato, Y, Inukai, Y (2012) OsIAA13-mediated auxin signaling is involved in lateral root initiation in rice. Plant Sci 190: pp. 116-122
    47. Kitomi, Y, Ito, H, Hobo, T, Aya, K, Kitano, H, Inukai, Y (2011) The auxin responsive AP2/ERF transcription factor CROWN ROOTLESS5 is involved in crown root initiation in rice through the induction of OsRR1, a type-A response regulator of cytokinin signaling. Plant J 67: pp. 472-484
    48. Kitomi, Y, Ogawa, A, Kitano, H, Inukai, Y (2008) CRL4 regulates crown root formation through auxin transport in rice. Plant Root 2: pp. 19-28
    49. Khowaja, FS, Norton, GJ, Courtois, B, Price, AH (2009) Improved resolution in the position of drought-related QTLs in a single mapping population of rice by meta-analysis. BMC Genomics 10: pp. 1-14
    50. Krishnan, A, Guiderdoni, E, An, G, Hsing, YI, Han, CD, Lee, MC, Yu, SM, Upadhyaya, N, Ramachandran, S, Zhang, Q, Sundaresan, V, Hirochika, H, Leung, H, Pereira, A (2009) Mutant resources in rice for functional genomics of the grasses. Plant Physiol 149: pp. 165-170
    51. Lafitte, H, Champoux, M, McLaren, G, O鈥橳oole, J (2001) Rice root morphological traits are related to isozyme group and adaptation. Field Crop Research 71: pp. 57-70
    52. Lavenus, J, Goh, T, Roberts, I, Guyomarc鈥檋, S, Lucas, M, Smet, I, Fukaki, H, Beeckman, T, Bennett, M, Laplaze, L (2013) Lateral root development in Arabidopsis: fifty shades of auxin. Trends Plant Sci 18: pp. 450-458
    53. Liu, H, Wang, S, Yu, X, Yu, J, He, X, Zhang, S, Shou, H, Wu, P (2005) ARL1, a LOB-domain protein required for adventitious root formation in rice. Plant J 43: pp. 47-56
    54. Liu, S, Wang, J, Wang, L, Wang, X, Xue, Y, Wu, P, Shou, H (2009) Adventitious root formation in rice requires OsGNOM1 and is mediated by the OsPINs family. Cell Res 19: pp. 1110-1119
    55. Lorbiecke, R, Sauter, M (1999) Adventitious root growth and cell-cycle induction in deepwater rice. Plant Physiol 119: pp. 21-30
    56. Lorieux, M, Blein, M, Lozano, J, Bouniol, M, Droc, G, Dievart, A, Perin, C, Mieulet, D, Lanau, N, Bes, M, Rouviere, C, Gay, C, Piffanelli, P, Larmande, P, Michel, C, Barnola, I, Biderre-Petit, C, Sallaud, C, Perez, P, Bourgis, F, Ghesquiere, A, Gantet, P, Tohme, J, Morel, JB, Guiderdoni, E (2012) In-depth molecular and phenotypic characterization in a rice insertion line library facilitates gene identification through reverse and forward genetics approaches. Plant Biotechnol J 10: pp. 555-568
    57. Ma, N, Wang, Y, Qiu, S, Kang, Z, Che, S, Wang, G, Huang, J (2013) Overexpression of OsEXPA8, a root-specific gene, improves rice growth and root system architecture by facilitating cell extension. PLoS One 8: pp. e75997
    58. MacMillan, K, Emrich, K, Piepho, HP, Mullins, CE, Price, AH (2006) Assessing the importance of genotype x environment interaction for root traits in rice using a mapping population II: conventional QTL analysis. Theor Appl Genet 113: pp. 953-964
    59. Mergemann, H, Sauter, M (2000) Ethylene induces epidermal cell death at the site of adventitious root emergence in rice. Plant Physiol 124: pp. 609-614
    60. Mockaitis, K, Estelle, M (2008) Auxin receptors and plant development: a new signaling paradigm. Annu Rev Cell Dev Biol 24: pp. 55-80
    61. Muller, R, Borghi, L, Kwiatkowska, D, Laufs, P, Simon, R (2006) Dynamic and compensatory responses of Arabidopsis shoot and floral meristems to CLV3 signaling. Plant Cell 18: pp. 1188-1198
    62. Ni J, Shen Y, Zhang Y, Wu P (2014) Definition and stabilisation of the quiescent center in rice roots. Plant Biol, in press
    63. O鈥橳oole, J, Bland, W (1987) Genotypic variation in crop plant root systems. Adv Agron 41: pp. 91-145
    64. Ogawa, D, Abe, K, Miyao, A, Kojima, M, Sakakibara, H, Mizutani, M, Morita, H, Toda, Y, Hobo, T, Sato, Y, Hattori, T, Hirochika, H, Takeda, S (2011) RSS1 regulates the cell cycle and maintains meristematic activity under stress conditions in rice. Nat Commun 2: pp. 278
    65. Orman-Ligeza, B, Parizot, B, Gantet, P, Beeckman, T, Bennett, MJ, Draye, X (2013) Post-embryonic root organogenesis in cereals: branching out from model plants. Trends Plant Sci 18: pp. 459-467
    66. Peret, B, Rybel, B, Casimiro, I, Benkova, E, Swarup, R, Laplaze, L, Beeckman, T, Bennett, MJ (2009) Arabidopsis lateral root development: an emerging story. Trends Plant Sci 14: pp. 399-408
    67. Puig, J, Pauluzzi, G, Guiderdoni, E, Gantet, P (2012) Regulation of shoot and root development trought mutual signaling. Mol Plant 5: pp. 574-583
    68. Qin, C, Li, Y, Gan, J, Wang, W, Zhang, H, Liu, Y, Wu, P (2013) OsDGL1, a homolog of an oligosaccharyltransferase complex subunit, is involved in N-glycosylation and root development in rice. Plant Cell Physiol 54: pp. 129-137
    69. Rani Debi, B, Taketa, S, Ichii, M (2005) Cytokinin inhibits lateral root initiation but stimulates lateral root elongation in rice (Oryza sativa). J Plant Physiol 162: pp. 507-515
    70. Rebouillat, A, Dievart, A, Verdeil, JL, Escoute, J, Giese, G, Breitler, JC, Gantet, P, Espeout, S, Guiderdoni, E, P茅rin, C (2009) Molecular genetic of rice root development. Rice 2: pp. 15-34
    71. Redillas, MC, Jeong, JS, Kim, YS, Jung, H, Bang, SW, Choi, YD, Ha, SH, Reuzeau, C, Kim, JK (2012) The overexpression of OsNAC9 alters the root architecture of rice plants enhancing drought resistance and grain yield under field conditions. Plant Biotechnol J 10: pp. 792-805
    72. Sabatini, S, Heidstra, R, Wildwater, M, Scheres, B (2003) SCARECROW is involved in positioning the stem cell niche in the Arabidopsis root meristem. Genes Dev 17: pp. 354-358
    73. Sato, Y, Takehisa, H, Kamatsuki, K, Minami, H, Namiki, N, Ikawa, H, Ohyanagi, H, Sugimoto, K, Antonio, BA, Nagamura, Y (2013) RiceXPro version 3.0: expanding the informatics resource for rice transcriptome. Nucleic Acids Res 41: pp. D1206-D1213
    74. Schatz MC, Maron LG, Stein JC, Hernandez Wentz A, Gurtowski J, Biggers E, Lee H, Kramer M, Antoniou E, Ghiban E, Wright MH, Chia JM, Ware DM, McCouch SR, McCombie WR (2014) New whole genome de novo assemblies of three divergent strains of rice documents novel gene space of aus and indica. bioRxiv, in press
    75. Shen, L, Courtois, B, McNally, K, Robin, S, Li, Z (2001) Evaluation of near-isogenic lines of rice introgressed with QTLs for root depth through marker-aided selection. Theor Appl Genet 103: pp. 75-83
    76. Shin, JH, Jeong, DH, Park, MC, An, G (2005) Characterization and transcriptional expression of the alpha-expansin gene family in rice. Mol Cells 20: pp. 210-218
    77. Steele, K, Price, A, Shashidhar, H, Witcombe, J (2006) Marker-assisted selection to introgress rice QTLs controlling root traits into an Indian upland rice variety. Theor Appl Genet 112: pp. 208-221
    78. Steele, KA, Price, AH, Witcombe, JR, Shrestha, R, Singh, BN, Gibbons, JM, Virk, DS (2013) QTLs associated with root traits increase yield in upland rice when transferred through marker-assisted selection. Theor Appl Genet 126: pp. 101-108
    79. Steffens, B, Wang, J, Sauter, M (2006) Interactions between ethylene, gibberellin and abscisic acid regulate emergence and growth rate of adventitious roots in deepwater rice. Planta 223: pp. 604-612
    80. Steinmann, T, Geldner, N, Grebe, M, Mangold, S, Jackson, CL, Paris, S, Galweiler, L, Palme, K, Jurgens, G (1999) Coordinated polar localization of auxin efflux carrier PIN1 by GNOM ARF GEF. Science 286: pp. 316-318
    81. Suji, KK, Prince, KSJ, Mankhar, PS, Kanagaraj, P, Poornima, R, Amutha, K, Kavitha, S, Biji, KR, Gomez, SM, Chandra Babu, R (2012) Evaluation of rice near isogenic lines with root QTLs for plant production and root traits in rainfed target populations of environment. Field Crop Res 137: pp. 89-96
    82. Suzaki, T, Yoshida, A, Hirano, HY (2008) Functional diversification of CLAVATA3-related CLE proteins in meristem maintenance in rice. Plant Cell 20: pp. 2049-2058
    83. Sweeney, M, McCouch, S (2007) The complex history of the domestication of rice. Ann Bot 100: pp. 951-957
    84. Takehisa, H, Sato, Y, Igarashi, M, Abiko, T, Antonio, BA, Kamatsuki, K, Minami, H, Namiki, N, Inukai, Y, Nakazono, M, Nagamura, Y (2012) Genome-wide transcriptome dissection of the rice root system: implications for developmental and physiological functions. Plant J 69: pp. 126-140
    85. To, JP, Haberer, G, Ferreira, FJ, Deruere, J, Mason, MG, Schaller, GE, Alonso, JM, Ecker, JR, Kieber, JJ (2004) Type-A Arabidopsis response regulators are partially redundant negative regulators of cytokinin signaling. Plant Cell 16: pp. 658-671
    86. Toda, Y, Tanaka, M, Ogawa, D, Kurata, K, Kurotani, K, Habu, Y, Ando, T, Sugimoto, K, Mitsuda, N, Katoh, E, Abe, K, Miyao, A, Hirochika, H, Hattori, T, Takeda, S (2013) RICE SALT SENSITIVE3 forms a ternary complex with JAZ and class-C bHLH factors and regulates jasmonate-induced gene expression and root cell elongation. Plant Cell 25: pp. 1709-1725
    87. Topp, CN, Iyer-Pascuzzi, AS, Anderson, JT, Lee, CR, Zurek, PR, Symonova, O, Zheng, Y, Bucksch, A, Mileyko, Y, Galkovskyi, T, Moore, BT, Harer, J, Edelsbrunner, H, Mitchell-Olds, T, Weitz, JS, Benfey, PN (2013) 3D phenotyping and quantitative trait locus mapping identify core regions of the rice genome controlling root architecture. Proc Natl Acad Sci U S A 110: pp. 1695-1704
    88. Uga, Y, Sugimoto, K, Ogawa, S, Rane, J, Ishitani, M, Hara, N, Kitomi, Y, Inukai, Y, Ono, K, Kanno, N, Inoue, H, Takehisa, H, Motoyama, R, Nagamura, Y, Wu, J, Matsumoto, T, Takai, T, Okuno, K, Yano, M (2013) Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nat Genet 45: pp. 1097-1102
    89. Berg, C, Willemsen, V, Hendriks, G, Weisbeek, P, Scheres, B (1997) Short-range control of cell differentiation in the Arabidopsis root meristem. Nature 390: pp. 287-289
    90. Vanneste, S, Friml, J (2009) Auxin: a trigger for change in plant development. Cell 136: pp. 1005-1016
    91. Wang, XF, He, FF, Ma, XX, Mao, CZ, Hodgman, C, Lu, CG, Wu, P (2010) OsCAND1 is required for crown root emergence in rice. Mol Plant 4: pp. 289-299
    92. Wei, FJ, Droc, G, Guiderdoni, E, Hsing, YI (2013) International consortium of rice mutagenesis: resources and beyond. Rice: 6: pp. 39
    93. Xia, K, Wang, R, Ou, X, Fang, Z, Tian, C, Duan, J, Wang, Y, Zhang, M (2012) OsTIR1 and OsAFB2 downregulation via OsmiR393 overexpression leads to more tillers, early flowering and less tolerance to salt and drought in rice. PLoS One 7: pp. e30039
    94. Xiong, J, Tao, L, Zhu, C (2009) Does nitric oxide play a pivotal role downstream of auxin in promoting crown root primordia initiation in monocots?. Plant Signal Behav 4: pp. 999-1001
    95. Xu, M, Zhu, L, Shou, H, Wu, P (2005) A PIN1 family gene, OsPIN1, involved in auxin-dependent adventitious root emergence and tillering in rice. Plant Cell Physiol 46: pp. 1674-1681
    96. Yoo, SC, Cho, SH, Paek, NC (2013) Rice WUSCHEL-related homeobox 3A (OsWOX3A) modulates auxin-transport gene expression in lateral root and root hair development. Plant Signal Behav 8: pp. e25929
    97. Yu, J, Hu, S, Wang, J, Wong, GK, Li, S, Liu, B, Deng, Y, Dai, L, Zhou, Y, Zhang, X, Cao, M, Liu, J, Sun, J, Tang, J, Chen, Y, Huang, X, Lin, W, Ye, C, Tong, W, Cong, L, Geng, J, Han, Y, Li, L, Li, W, Hu, G, Li, J, Liu, Z, Qi, Q, Li, T, Wang, X, Lu, H, Wu, T, Zhu, M, Ni, P, Han, H, Dong, W, Ren, X, Feng, X, Cui, P, Li, X, Wang, H, Xu, X, Zhai, W, Xu, Z, Zhang, J, He, S, Xu, J, Zhang, K, Zheng, X, Dong, J, Zeng, W, Tao, L, Ye, J, Tan, J, Chen, X, He, J, Liu, D, Tian, W, Tian, C, Xia, H, Bao, Q, Li, G, Gao, H, Cao, T, Zhao, W, Li, P, Chen, W, Zhang, Y, Hu, J, Liu, S, Yang, J, Zhang, G, Xiong, Y, Li, Z, Mao, L, Zhou, C, Zhu, Z, Chen, R, Hao, B, Zheng, W, Chen, S, Guo, W, Tao, M, Zhu, L, Yuan, L, Yang, H (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296: pp. 79-92
    98. Zhang, J, Xu, L, Wang, F, Deng, M, Yi, K (2012) Modulating the root elongation by phosphate/nitrogen starvation in an OsGLU3 dependant way in rice. Plant Signal Behav 7: pp. 1144-1145
    99. Zhang, JW, Xu, L, Wu, YR, Chen, XA, Liu, Y, Zhu, SH, Ding, WN, Wu, P, Yi, KK (2012) OsGLU3, a putative membrane-bound endo-1,4-beta-glucanase, is required for root cell elongation and division in rice (Oryza sativa L.). Mol Plant 5: pp. 176-186
    100. Zhao, Y, Hu, Y, Dai, M, Huang, L, Zhou, DX (2009) The WUSCHEL-related homeobox gene WOX11 is required to activate shoot-borne crown root development in rice. Plant Cell 21: pp. 736-748
    101. Zheng, H, Li, S, Ren, B, Zhang, J, Ichii, M, Taketa, S, Tao, Y, Zuo, J, Wang, H (2013) LATERAL ROOTLESS2, a cyclophilin protein, regulates lateral root initiation and auxin signaling pathway in rice. Mol Plant 6: pp. 1719-1721
    102. Zhu, C, Gore, M, Buckler, ES, Yu, J (2008) Status and prospects of association mapping in plants. The Plant Genome 1: pp. 2-20
    103. Zhu, ZX, Liu, Y, Liu, SJ, Mao, CZ, Wu, YR, Wu, P (2012) A gain-of-function mutation in OsIAA11 affects lateral root development in rice. Mol Plant 5: pp. 154-161
    104. Zou, Y, Liu, X, Wang, Q, Chen, Y, Liu, C, Qiu, Y, Zhang, W (2014) OsRPK1, a novel leucine-rich repeat receptor-like kinase, negatively regulates polar auxin transport and root development in rice. Biochim Biophys Acta 釁? pp. 釁
  • 刊物主题:Plant Sciences; Plant Genetics & Genomics; Plant Breeding/Biotechnology; Agriculture; Plant Ecology;
  • 出版者:Springer US
  • ISSN:1939-8433
文摘
In this review, we report on the recent developments made using both genetics and functional genomics approaches in the discovery of genes controlling root development in rice. QTL detection in classical biparental mapping populations initially enabled the identification of a very large number of large chromosomal segments carrying root genes. Two segments with large effects have been positionally cloned, allowing the identification of two major genes. One of these genes conferred a tolerance to low phosphate content in soil, while the other conferred a tolerance to drought by controlling root gravitropism, resulting in root system expansion deep in the soil. Findings based on the higher-resolution QTL detection offered by the development of association mapping are discussed. In parallel with genetics approaches, efforts have been made to screen mutant libraries for lines presenting alterations in root development, allowing for the identification of several genes that control different steps of root development, such as crown root and lateral root initiation and emergence, meristem patterning, and the control of root growth. Some of these genes are closely phylogenetically related to Arabidopsis genes involved in the control of lateral root initiation. This close relationship stresses the conservation among plant species of an auxin responsive core gene regulatory network involved in the control of post-embryonic root initiation. In addition, we report on several genetic regulatory pathways that have been described only in rice. The complementarities and the expected convergence of the direct and reverse genetic approaches used to decipher the genetic determinants of root development in rice are discussed in regards to the high diversity characterizing this species and to the adaptations of rice root system architecture to different edaphic environments.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700