Diagenetic control of magnetic susceptibility variation in Core MD98-2172 from the Eastern Timor Sea
详细信息    查看全文
  • 作者:Haiyan Li (1)
    Shihong Zhang (1)
    Lingyan Bai (1)
    Nianqiao Fang (1) (2)
  • 关键词:Eastern Timor Sea ; susceptibility ; reductive diagenesis ; fine detrital particles
  • 刊名:Chinese Journal of Oceanology and Limnology
  • 出版年:2010
  • 出版时间:November 2010
  • 年:2010
  • 卷:28
  • 期:6
  • 页码:1350-1361
  • 全文大小:973KB
  • 参考文献:1. Berner R A. 1980. Early Diagenesis: A Theoretical Approach. Princeton Univ. Press, Princeton, USA. p. 1-41.
    2. Berner R A. 1984. Sedimentary pyrite formation: An update. / Geochim. Cosmochim. Acta, 48: 605-15. CrossRef
    3. Biscaye P E. 1965. Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. / Geol. Soc. Am. Bull., 76: 803-31. CrossRef
    4. Bloemental J, King J W, Hall F R et al. 1992. Rock magnetism of late Neogene and Pleistocene deep-sea sediments: relationship to sediment source, digenetic processes, and sediment lithology. / J. Geophys. Res., 97: 4 361- 375.
    5. Bloemental J, King J W, Hunt A et al. 1993. Origin of the sedimentary magnetic record at Ocean Drilling Program Sites on the Owen Ridge, western Arabian Sea. / J. Geophys. Res., 98: 4 199- 219.
    6. Bloemental J, King J W, Tauxe L et al. 1989. Rock magnetic stratigraphy of Leg 108 (eastern tropical Atlantic) Sites 658, 659, 661 and 665. / Proc. ODP, Sci. Res., 108: 415-28.
    7. Brachfeld S A, Banerjee S K, Guyodo Y et al. 2002. A 13 200 year history of century to millennial-scale paleoenvironmental change magnetically recorded in the Palmer Deep, western Antarctic Peninsula. / Earth Planet. Sci. Lett., 194: 311-26. CrossRef
    8. Caatay M N, Keigwin L D, Okay N et al. 2002. Variability of clay-mineral composition on Carolina Slope (NW Atlantic) during marine isotope stages 1- and its paleoceanographic significance. / Mar. Geol., 189: 163-74. CrossRef
    9. Canfield D E, Berner E A. 1987. Dissolution and pyritization of magnetite in anoxic marine sediments. / Geochim. Cosmochim. Acta, 51: 645-59. CrossRef
    10. Cecil C B, Dulong F T, Harris R A et al. 2003. Observations on Climate and Sediment Discharge in Selected Tropical Rivers, Indonesia. Climate Controls on Stratigraphy. / SEPM, Special Publication, 77: 29-0.
    11. Chamley H. 1989. Clay Sedimentology. Springer, Berlin, Germany. p. 1-23.
    12. Curtis C. 1987. Mineralogical consequences of organic matter degradation in sediments: Inorganicrorganic Diagenesis. / In: Leggett J K, Zuffa G G eds. Marine Clastic Sedimentology. Graham and Trotman, London, United Kingdom. p. 108-23.
    13. Day R, Fuller M, Schmidt V A. 1977. Hysteresis properties of titanomagnetites: Grain size and composition dependence. / Phys. Earth Planet. Inter., 13: 260-67. CrossRef
    14. Dunlop D J. 2002a. Theory and application of the Day Plot ( / M rs/ / M s versus / H cr/ / H c) 1. Theoretical curves and tests using titanomagnetite data. / J. Geophys. Res., 107, doi:10.1029/2001JB000486.
    15. Dunlop D J. 2002b. Theory and application of the Day Plot ( / M rs/ / M s versus / H cr/ / H c) 2. Application to data for rocks, sediments, and soils. / J. Geophys. Res., 107, doi:10.1029/2001JB000487.
    16. Dunlop D J, zdemir zden. 1997. Rock Magnetism: Fundamentals and Frontiers. Cambridge University Press, Cambridge, United Kingdom. p. 1-73. CrossRef
    17. Earthinfo. 1996. GHCN Global Climate, Boulder, Colorado, Earthinfo, Inc., CD ROM.
    18. Edzwald J K, O’Melia C R. 1975. Clay distribution in recent estuaryine sediments. / Clays Clay Miner., 23: 39-4. CrossRef
    19. Evans M E, Heller F. 2003. Environmental Magnetism: Principles and Applications of Environmagnetics. Academic Press, Oxford, United Kingdom. p. 1-99.
    20. Gingele F X, Deckker P D, Hillenbrand C D. 2001. Clay mineral distribution in surface sediments between Indonesia and NW Australia-source and transport by ocean currents. / Mar. Geol., 179: 135-46. CrossRef
    21. Godfrey J S, Golding T J. 1981. The Sverdrup relation in the Indian Ocean, and the effect of Pacific-Indian Ocean throughflow on Indian Ocean circulation and on the East Australian Current. / J. Phys. Oceanogr., 11: 771-79. CrossRef
    22. Godfrey J S, Ridgway K R. 1985. The large-scale environment of the poleward-flowing Leeuwin Current, Western Australia: Longshore steric height gradients, wind stresses and geostrophic flow. / J. Phys. Oceanogr., 15: 481-95. CrossRef
    23. Gordon A L, Fine R A. 1996. Pathways of water between the Pacific and Indian Oceans in the Indonesian seas. / Nature, 379: 146-49. CrossRef
    24. Haack U, Gohn E, Bücker C et al. 1990. Radiogenic heat production measured by laboratory and borehole methods, a comparison. / Sci. Drill., 1: 211-16.
    25. Hillenbrand C D, Grobe H, Diekmann B et al. 2003. Distribution of clay minerals and proxies for productivity in surface sediments of the Bellingshausen and Amundsen seas (West Antarctica)-Relation to modern environmental conditions. / Mar. Geol., 193: 253-71. CrossRef
    26. Hounslow M W, Maher B A. 1999. Source of the climate signal recorded by magnetic susceptibility variations in Indian Ocean sediments. / J. Geophys. Res., 104: 5 047- 061. CrossRef
    27. Huenges E, Bücker C, Lippmann E et al. 1997. Seismic velocity, density, thermal conductivity and heat production of cores from the KTB pilot hole. Geophys. Res. Lett., 24: 345-48. CrossRef
    28. Karlin R, Levi S. 1985. Geochemical and sedimentological control on the magnetic properties of hemipelagic sediments. / J. Geophys. Res., 90: 1 0373- 0392. CrossRef
    29. Keller W D. 1970. Enrironmental aspects of clay minerals. / J. Sediment Res. 40: 788.
    30. Kuhlemann J, Lange H, Paetsch H. 1993. Implications of a connection between clay mineral variations and coarse grained debris and lithology in the central Norwegian-Greenland Sea. / Mar. Geol., 114: 1-1. CrossRef
    31. Lanci L, Kent D V, Miller K G. 2002. Detection of Later Cretaceous and Cenozoic sequence boundaries on the Atlantic coastal plain using core log integration of magnetic susceptibility and natural gamma ray measurements at Ancora, New Jersey. / J. Geophys. Res. 107, doi:10.1029/2000JB000026.
    32. Li H Y, Zhang S H. 2005. Detection of mineralogical changes in pyrite using measurements of temperature-dependence susceptibilities. / Chinese J. Geophys. 48: 1384-391.
    33. Li H Y, Zhang S H, Fang N Q et al. 2006. Magnetic records of Core MD77-181 in the Bay of Bengal and their paleoenvironmental implications, / Chinese Sci. Bull., 51: 1 884- 893.
    34. Liu J, Zhu R X, Roberts A P et al. 2004. High-resolution analysis of early diagenetic effects on magnetic minerals in post-middle-Holocene continental shelf sediments from the Korea Strait. / J. Geophys. Res., 109, doi:10.1029/2003JB002813.
    35. Lvlie R, van Veen P. 1995. Magnetic Susceptibility of a 180 m Sediment Core: Reliability of Incremental Sampling and Evidence for Relationship Between Susceptibility and Gamma Activity. / In: Turner P, Turner A eds. Palaeomagnetic Applications in Hydrocarbon Exploration and Production. / Geological Society Special Publication. 98:259-66.
    36. Maher B A, Thompson R. 1999. Quaternary Climates, Environments and Magnetism. Cambridge University Press, Cambridge, United Kingdom. p. 1-82. CrossRef
    37. Nealson K H. 1983a. Microbial Oxidation and Reduction of Manganese and Iron. / In: Westbroek P, de Jong E W eds. Biomineralization and Biological Metal Accumulation. D Reidel, p. 459-79.
    38. Nealson K H. 1983b. The Microbial Iron Cycle. / In: Krumbein, W E ed. Microbial Geochemistry. Blackwell, London, United Kingdom. p. 159-90.
    39. Oldfield F, Robinson S G. 1985. Geomagnetism and Palaeoclimate. / In: Tooley M J, Sheil G eds. The climatic scene. George Allen & Unwin, London, United Kingdom.
    40. Peters C, Dekkers M J. 2003. Selected room temperature magnetic parameters as a function of mineralogy, concentration and grain size. / Phys. Chem. Earth, 28: 659-67.
    41. Roberts A P, Stoner J S, Richter C. 1999. Diagenetic enhancement of sapropels from the eastern Mediterranean Sea. / Mar. Geol., 153: 103-53. CrossRef
    42. Roberts A P, Weaver R. 2005. Multiple mechanisms of remagnetization involving sedimentary greigite (Fe3S4). / Earth Planet. Sci. Lett., 231: 263-77. CrossRef
    43. Robinson S G, Maslin M A, McCave I N. 1995. Magnetic-susceptibility variations in upper Pleistocene deep-sea sediments of the NE Atlantic-Implications for ice rafting and paleocirculation at the last glacial maximum. / Paleoceanography, 10: 221-50. CrossRef
    44. Robinson S G, Sahota J T S, Oldfield F. 2000. Early diagenesis in North Atlantic abyssal plain sediments characterized by rock-magnetic and geochemical indices. / Mar. Geol., 163: 77-07. CrossRef
    45. Rowan C J, Roberts A P, Broadbent T. 2009. Reductive diagenesis, magnetite dissolution, greigite growth and paleomagnetic smoothing in marine sediments: A new view. / Earth Planet. Sci. Lett., 277: 223-35. CrossRef
    46. Sahota J T S, Robinson S G, Oldfield F. 1995. Magnetic measurements used to identify paleoxidation fronts in deep-sea sediments from the Madeira Abyssal Plain. / Geophys. Res. Lett., 22: 1 961- 964. CrossRef
    47. Serra O. 1984. Fundamentals of Well Log Interpretation, Vol. 1, The acquisition of Logging Data. Elsevier, New York, USA.
    48. Serra O. 1986. Fundamentals of Well Log Interpretation. Vol. 1, The Interpretation of Logging Data. Elsevier, New York, USA.
    49. Srensen J. 1982. Reduction of ferric iron in anaerobic marine sediment and interaction with reduction of nitrate and sulphate. / Appl. Environ. Microbiol., 43: 319-24.
    50. Thiry M. 2000. Palaeoclimatic interpretation of clay minerals in marine deposits: an outlook from the continental origin. / Earth Sci. Rev., 49: 201-21. CrossRef
    51. Thompson R, Oldfield F. 1986. Environmental Magnetism. Allen & Unwin, London, United Kingdom. p. 1-27.
    52. Tomczak M, Godfrey J S. 1994. Regional Oceanography: An Introduction. Pergamon Press, Oxford, United Kingdom.
    53. van Santvoort P J M, de Lange G J, Langereis C G et al. 1997. Geochemical and paleomagnetic evidence for the occurrence of “missing-sapropels in eastern Mediterranean sediments. / Paleoceanography, 12: 773-86. CrossRef
    54. Vigliotti L. 1997. Magnetic properties of light and dark sediment layers from the Japan Sea: diagenetic and paleoclimatic implications. / Quat. Sci. Rev., 16: 1 093- 114. CrossRef
    55. Wahl J S. 1983. Gamma ray logging. / Geophysics, 48: 1 536- 550. CrossRef
    56. Weaver C E. 1989. Clays, Muds, and Shales. Developments in Sedimentology 44. Elsevier, Amsterdam, Netherlands.
    57. Wijffels S E, Hautala S, Meyers G et al. 1996. The WOCE Indonesian Throughflow repeat hydrography sections: I10 and IR6. / Int. WOCE News Lett., 24: 25-8.
    58. Wu H C, Zhang S H, Jiang G Q et al. 2005. Magnetic susceptibility variations of the Edicaran cap carbonates in the Yangtze platform and their implications for paleoclimate. / Chin. J Oceanol. Limnol., 23(3): 291-98. CrossRef
    59. Zhang S H, Wang X L, Zhu H. 2000. Magnetic susceptibility variations of the Carbonates controlled by sea-level changes: examples in Devonian to Carboniferous strata in southern Guizhou Province, China. / Sci. China, (Ser D), 43(3): 266-76. CrossRef
  • 作者单位:Haiyan Li (1)
    Shihong Zhang (1)
    Lingyan Bai (1)
    Nianqiao Fang (1) (2)

    1. State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing, 100083, China
    2. School of Marine Science, China University of Geosciences, Beijing, 100083, China
  • ISSN:1993-5005
文摘
Detailed mineral magnetic measurements, integrated with grain-size distribution and X-ray diffraction (XRD) analyses, were made on the marine sediments of Core MD98-2172, retrieved from the Eastern Timor Sea. Values of magnetic susceptibility in this core drop sharply down-core from .85 m deep below sediment/water interface and are very low at .35 m. However, both XRD and grain-size distribution results show no sudden change in terrigenous input during sedimentation. Mineral magnetic results indicate that the depth of .85 m may be an oxic/anoxic boundary. Therefore, the sediments below .85 m have been subjected to intense reductive diagenesis, whereas the sediments above .85 m are seldom affected. The magnetic properties of the sediments shallower than 3.85 m are dominated by pseudo-single domain (PSD) magnetite, with little down-core variation in its content and grain size. Below .85 m, the magnetic mineral assemblages that have survived in the sediments may record different stages of the reductive diagenesis: (1) the sediments from the 3.85-.35 m interval are at the stage of iron oxide reduction; PSD magnetite is the major magnetic contributor, but it becomes less abundant and coarser down-core; (2) the sediments below .35 m are at the stage of sulphate reduction; ferrimagnetic minerals almost vanish and paramagnetic minerals contribute to down-core susceptibility variations, including pyrite as evidenced by high-temperature magnetic susceptibility measurements. However, the susceptibility variations below .35 m of Core MD98-2172 show obvious periodicity, despite the intense effect of reductive diagenesis. Furthermore, the down-core susceptibility variations are coincident with fluctuations in the quantity of fine detrital particles (<8 μm), which may come mainly from the advection of the Indonesia Throughflow (ITF) and/or river input from Timor. Therefore, for Core MD98-2172, susceptibility variation below .35 m, which potentially correspond to fluctuations in the quantity of fine particles, may record the histories of the development of the ITF and precipitation on Timor.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700