Cretaceous black shale and the oceanic red beds: Process and mechanisms of oceanic anoxic events and oxic environment
详细信息    查看全文
  • 作者:Zhenguo Zhang (1)
    Nianqiao Fang (2)
    Lianfeng Gao (1)
    Baoling Gui (2)
    Muhua Cui (2)
  • 关键词:anoxic event ; black shale ; oceanic red bed ; oxic process ; oceanic volcanic activity ; Cretaceous
  • 刊名:Frontiers of Earth Science
  • 出版年:2008
  • 出版时间:March 2008
  • 年:2008
  • 卷:2
  • 期:1
  • 页码:41-48
  • 全文大小:476KB
  • 参考文献:1. Andrew C K, John J M (2007). Oceanic plateaus: Problematic plumes, potential paradigms. Chemical Geology (in press)
    2. Arthur M A (1979). North Atlantic Cretaceous black shale: The record at site 398 and a brief comparison with other occurrences. Initial Reports of the Deep Sea Drilling Project, 47(Part 2): 719鈥?51
    3. Asimow P D, Hirschmann M M, Stolper E M (2001). Calculation of peridotite partial melting from thermodynamic models of minerals melts: IV. Adiabatic decompression and the composition mean properties of mid-ocean ridge basalts. Journal of Petrology, 42(5): 963鈥?98 CrossRef
    4. Barron (1983). A warm equable Cretaceous: The nature of the problem. Earth Science Reviews, 19: 305鈥?38
    5. Berner R A (1992). Atmospheric CO2 over Phanerozoic time. In: Kharaka, Maest, eds. Water-Rock Interaction. Balkema: Rotterdam, 35鈥?7
    6. Blank J G, Delaney J R, Des M D (1993). The concentration isotopic composition of carbon in basaltic glasses from the Juan de Fuca Ridge. Geochimica et Cosmochimica Acta, 7: 875鈥?88 CrossRef
    7. Boyd P W, Watson A J, Law C S, et al (2000). A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization. Nature, 407: 695鈥?02 CrossRef
    8. Boye M, van den Berg, Constant M G, et al (2001). Organic complexation of iron in the southern ocean. Deep-Sea Research, Part I: Oceanographic Research Papers, 48(6): 1477鈥?497 CrossRef
    9. Bralower T J, Premoli S I, Malone M J, et al (2002). Mid-Cretaceous Oceanic Anoxic Events. ODP(Ocean Drilling Program) Initial Reports, 198: 4鈥?6
    10. Chan L H, Alt J C, Teagle D A (2002). Lithium and lithium isotope profiles through the upper oceanic crust: A study of seawater-basalt exchange at ODP Sites 504B and 896A. Earth and Planetary Science Letters, 201(1): 187鈥?01 CrossRef
    11. Coale K H, Fitzwater S E, Gordon R M, et al (1996). Control of community growth and export production by upwelled iron in the equatorial Pacific Ocean. Nature, 379: 621鈥?24 CrossRef
    12. Coffin M F, Eldholm O (1994). Large igneous provinces: Crustal structure, dimensions, and external consequences. Rev Geophys, 32: 1鈥?6 CrossRef
    13. Dana L R, Robert A B, David J B (2001). Phanerozoic atmospheric CO2 change: Evaluating geochemical and paleobiological approaches. Earth Science Reviews, 54(4): 349鈥?92 CrossRef
    14. de Baar H, de Jong M (2001). Distributions, sources and sinks of iron in seawater. In: Turner D R, Hunter K A, eds. Biogeochemistry of Fe in Seawater. SCOR/IUPAC, Chichester, 123鈥?53
    15. de Baar H, de Jong M, Bakker D E, et al (1995). Importance of iron for plankton blooms and carbon-dioxide drawdown in the Southern Ocean. Nature, 373: 412鈥?15 CrossRef
    16. Donnadieu Y, Pierrehumbert R, Jacob R, et al (2006). Modelling the primary control of paleogeography on Cretaceous climate. Earth and Planetary Science Letters, 248: 426鈥?37 CrossRef
    17. Duce R A, Tindale N W (1991). Atmospheric transport of iron and its deposition in the ocean. Limnology and Oceanography, 36: 1715鈥?726 CrossRef
    18. Fisk M R, Giovannoni S J, Thorseth I H (1998). The extent of microbial life in the volcanic crust of the ocean basins. Science, 281: 978鈥?80 CrossRef
    19. Florence N, Peter J S, Matt M (2007). Processes influencing dissolved iron distributions below the surface at the Atlantic Ocean-Celtic Sea shelf edge. Marine Chemistry, 104(21): 156鈥?70
    20. Furnes H, Taudigel H (1999). Biological mediation of basalt glass alteration in the ocean crust: How deep is the deep biosphere? Earth and Planetary Science Letters, 166: 97鈥?03 CrossRef
    21. Geider R J, LaRoche J (1994). The role of iron in phytoplankton photosynthesis, and the potential for iron-limitation of primary productivity in the sea. Photosynthesis Research, 39: 275鈥?01 CrossRef
    22. G茅raldine S, Alex R B, Jurjen K, et al (2007). Influence of atmospheric inputs on the iron distribution in the subtropical North-East Atlantic Ocean. Marine Chemistry, 104: 186鈥?02 CrossRef
    23. Gordon R M, Coale K H, Johnson K S (1997). Iron distributions in the equatorial Pacific: Implications for new production. Limnology and Oceanography, 141: 419鈥?31
    24. Hong H J, Yu Y, Zheng X Z, et al (2003). Global volcano distribution: Pattern and variation. Earth Science Frontiers, 10: 11鈥?6 (in Chinese with English abstract)
    25. Hu X M, Luba J, Massimo S (2005). Mid-Cretaceous oceanic red beds in the Umbria-Marche basin, central Italy: Constraints on paleoceanography and paleoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology, 233: 163鈥?86 CrossRef
    26. Hutchins D A, DiTullio G R, Zhang Y, et al (1998). An iron limitation mosaic in the California upwelling regime. Limnology and ceanography, 43: 1037鈥?054 CrossRef
    27. Hutchins D A, Sedwick P N, DiTullio G R, et al (2002). Phytoplankton Fe limitation in the Humboldt current and Peru upwelling. Limnology and Oceanography, 47: 997鈥?011
    28. Hutchins D A, Wang W X, Fisher N S (1995). Copepod grazing and the biogeochemical fate of diatom iron. Limnology and Oceanography, 40: 989鈥?94
    29. Jeffrey C A, Pilar M (2000). On the role of microbes in the alteration of submarine basaltic glass: a TEM study. Earth and Planetary Science Letters, 181: 301鈥?13 CrossRef
    30. Jickells T (1999). The inputs of dust derived elements to the Sargasso Sea: A synthesis. Marine Chemistry, 68: 5鈥?4 CrossRef
    31. Jickells T, Spokes L J (2001). Atmospheric iron inputs to the oceans. In: Turner D R, Hunter K A, Eds., The Biogeochemistry of Iron in Seawater. SCOR-IUPAC, Baltimore, 85鈥?21
    32. Jones C E, Jenkyns H C (2001). Seawater strontium isotopes, oceanic anoxic events and seafloor hydrothermal activity in the Jurassic and Cretaceous. American Journal Sciences, 301: 112鈥?49 CrossRef
    33. Jun K (2005). Why did not the Ontong Java plateau form subaerially. Earth and Planetary Science Letters, 234: 385鈥?99 CrossRef
    34. Kenneth S J, Michael R G, Kenneth H C (1997). What controls dissolved iron concentrations in the world ocean? Marine Chemistry, 57: 137鈥?61 CrossRef
    35. Kevin B, Trond H T (2004). Derivation of large igneous provinces of the past 200 million years from long-term heterogeneities in the deep mantle. Earth and Planetary Science Letters, 227: 531鈥?38 CrossRef
    36. Larson R L (1991). Geological consequences of superplumes. Geology, 19: 963鈥?66 CrossRef
    37. Liu Y S, Zhang G L (1996). An experimental study on seawaterbasalt interaction at 250鈥?00掳C and 100 MPa. Geochemistry, 25: 53鈥?2 (in Chinese with English abstract)
    38. Mackey D J, O鈥檚ullivan J E, Watson R J (2002). Iron in the western Pacific: A riverine or hydrothermal source for iron in the equatorial undercurrent? Deep-Sea Research I, 49: 877鈥?93 CrossRef
    39. Martin J H (1990). Glacical-interglacial CO2 change: The iron hypothesis. Paleoceanography, 5: 1鈥?3 CrossRef
    40. Martin J H, Coale K H, Johnson K S, et al (1994). Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. Nature, 371: 123鈥?29 CrossRef
    41. Martin J H, Fitzwater S E (1988). Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic. Nature, 331: 177鈥?96
    42. Martin J H, Fitzwater S E, Gordon R M, et al (1993). Iron, primary production and carbon-nitrogen flux studies during the JGOFS North Atlantic bloom experiment. Deep Sea Research Part II: Topical Studies in Oceanography, 40: 115鈥?34 CrossRef
    43. Martin J H, Gordon R M, Fitzwater S E, et al (1989). VERTEX: Phytoplankton/iron studies in the Gulf of Alaska. Deep-Sea Research, 36: 649鈥?80 CrossRef
    44. Martin J M, Meybeck M (1979). Elemental mass balance of material carried by major world rivers. Marine Chemistry, 7: 173鈥?06 CrossRef
    45. Murataa A, Kumamotoa Y, Saitoa C, et al (2002). Impact of a spring phytoplankton bloom on the CO2 system in the mixed layer of the northwestern Pacific. Deep-Sea Research II, 49: 5531鈥?555 CrossRef
    46. Philip E J, Paterno R C (2001). Geochemistry of the oldest Atlantic oceanic crust suggests mantle plume involvement in the early history of the central Atlantic Ocean. Earth and Planetary Science Letters, 192: 291鈥?02 CrossRef
    47. Pieter P T, Joseph A B, Ralph F K (1993). Oceanic 13C/12C observation: A new window on ocean CO2 uptake. Global Biogeochemical Cycles, 7: 353鈥?68 CrossRef
    48. Pineau F, Javoy M (1994). Strong degassing at ridge crests: the behavior of dissolved carbon, water in basalt glasses at Mid-Atlantic ridge. Earth and Planetary Science Letters, 123: 179鈥?98 CrossRef
    49. Price M L, Morel F M (1998). Biological cycling of iron in the ocean. Metal Ions in Biological System, 35: 1鈥?6
    50. Richard E E, Kenneth L B, Ian H (2005). Campbell frontiers in large igneous province research. Lithos, 79: 271鈥?97 CrossRef
    51. Rolf S A, Michael G, Fred T M (2006). The control of Phanerozoic atmosphere and seawater composition by basalt-seawater exchange reactions. Journal of Geochemical Exploration, 88: 412鈥?15 CrossRef
    52. Sanudo S A, Rivera D I, Flegal R (1996). Distribution of colloidal trace metals in the San Francisco Bay estuary. Geochimica et Cosmochimica Acta, 60: 4933鈥?944 CrossRef
    53. Schlanger S O, Jenkyns H C (1976). Cretaceous oceanic an-oxic events: Cause and consequence. Geology, 55: 179鈥?84
    54. Schmidt M A, Hutchins D A (1999). Size-fractionated biological iron and carbon uptake along a coastal to offshore transect in the NE Pacific. Deep Sea Research Part II: Topical Studies in Oceanography, 46: 2487鈥?503 CrossRef
    55. Schoemann V, de Baar J, de Jong T, et al (1998). Effects of phytoplankton blooms on the cycling of manganese and iron in coastal waters. Limnology and Oceanography, 43: 1427鈥?441 CrossRef
    56. Schubert C, Sandwell D (1989). Crustal volumes of the continents of oceanic and continental submarine plateaus. Earth and Planetary Science Letters, 92: 234鈥?46 CrossRef
    57. Shigenobu T, Atsushi T (2005). An in situ iron-enrichment experiment in the western subarctic Pacific (SEEDS): Introduction and summary. Progress in Oceanography, 64: 95鈥?09 CrossRef
    58. Sinton C W, Duncan R A (1998). An oceanic flood basalt province within the Caribbean plate. Earth and Planetary Science Letters, 155: 221鈥?35 CrossRef
    59. Takata H (2004). Spatial variability of iron in the surface ocean water of the northwestern Pacific Ocean. Marine Chemistry, 86: 139鈥?57 CrossRef
    60. Tarduno J A, Sliter W V, Kroenke L, et al (1991). Rapid formation of Ontong Java plateau by Aptian mantle plume volcanism. Science, 254: 399鈥?03 CrossRef
    61. Thorseth I H, Pedersen R B, Christie D M (2003). Microbial alteration of 0鈥?0 Ma seafloor and sub-seafloor basaltic glasses from the Australian Antarctic discordance. Earth and Planetary Science Letters, 215: 237鈥?47 CrossRef
    62. Torsvik T, Furnes H, Muehlenbachs K, et al (1998). Evidence for microbial activity at the glass-alteration interface in oceanic basalts. Earth and Planetary Science Letters, 162: 165鈥?76 CrossRef
    63. Ulrich H, Peter A, Hochuli J O, et al (2004). Absence of major vegetation and palaeoatmospheric / pCO2 changes associated with oceanic anoxic event 1a (Early Aptian, SE France). Earth and Planetary Science Letters, 223: 303鈥?18 CrossRef
    64. Wallmann K (2001). Controls on the Cretaceous and Cenozoic evolution of seawater composition, atmospheric CO2 and climate. Geochimica et Cosmochimica Acta, 65(18): 3005鈥?025 CrossRef
    65. Wan X Q, Massimo S (2005). Cretaceous oceanic red beds and land-ocean interaction. Cretaceous Research, 26(1): 1鈥? CrossRef
    66. Wells M L, Price N M, Bruland K W (1995). Iron chemistry in seawater and its relationship to phytoplankton. Marine Chemistry, 48: 157鈥?82 CrossRef
    67. Wells M L, Vallis G K, Silver E A (1999). Tectonic processes in Papua New Guinea and past productivity in the eastern equatorial Pacific Ocean. Nature, 398: 601鈥?04 CrossRef
    68. Wignall P B (2001). Large igneous provinces and mass extinctions. Earth Science Reviews, 53: 1鈥?3 CrossRef
    69. Wolfgang B, Karina J E (2003). Iron and sulfide oxidation within the basaltic ocean crust: Implications for chemolithoautotrophic microbial biomass production. Geochimica et Cosmochimica Acta, 67: 3871鈥?887 CrossRef
    70. Wu G H., Zhang R Y, Zhang C (2004). Physical Geography. Higher Education Press, Beijing, 59鈥?28 (in Chinese)
    71. Wu J B, Sunda E W, Wen L S (2001). Soluble and colloidal iron in the oligotrophic North Atlantic and North Pacific. Science, 293: 847鈥?49 CrossRef
    72. Zhou S Z, Tian L S, Hu S X, et al (2005). Meteorology and Climatology. Higher Education Press, Beijing, 21鈥?6 (in Chinese)
    73. Zhuang G S, Yi Z, Wallace G T (1995). Iron (II) in rainwater, snow, and surface seawater from a coastal environment. Marine Chemistry, 50: 41鈥?0 CrossRef
  • 作者单位:Zhenguo Zhang (1)
    Nianqiao Fang (2)
    Lianfeng Gao (1)
    Baoling Gui (2)
    Muhua Cui (2)

    1. Hebei Polytecnic University, Tangshan, 063009, China
    2. China University of Geosciences, Beijing, 100083, China
  • ISSN:2095-0209
文摘
The Cretaceous is an important period in which many geological events occurred, especially the OAEs (oceanic anoxic events) which are characterized by black shale, and the oxic process characterized by CORBs (Cretaceous oceanic red beds). In this paper, the causative mechanism behind the formation of black shale and the oceanic red beds are described in detail. This may explain how the oceanic environment changed from anoxic to oxic in the Cretaceous period. It is suggested that these two different events happened because of the same cause. On the one hand, the large-scale magma activities in Cretaceous caused the concentration of CO2, the release of the inner energy of the earth, superficial change in the ocean-land, and finally, the increase of atmospheric temperature. These changes implied the same tendency as the oceanic water temperature show, and caused the decrease in O2 concentration in the Cretaceous ocean, and finally resulted in the occurrence of the OAEs. On the other hand, violent and frequent volcanic eruptions in the Cretaceous produced plenty of Fe-enriched lava on the seafloor. When the seawater reacted with the lava, the element Fe became dissolved in seawater. Iron, which could help phytoplankton grow rapidly, is a micronutrient essential to the synthesis of enzymes required for photosynthesis in the oceanic environment. Phytoplankton, which grows in much of the oceans around the world, can consume carbon dioxide in the air and the ocean. Meanwhile, an equal quantity of oxygen can be produced by the phytoplankton during its growth. Finally, the oxic environment characterized by red sediment rich in Fe3+ appeared. The anoxic and oxic conditions in the Cretaceous ocean were caused by volcanic activities, but they stemmed from different causative mechanisms. The former was based on physical and chemical processes, while the latter involved more complicated bio-oceanic-geochemical processes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700