Wildfire changes the spatial pattern of soil nutrient availability in Pinus canariensis forests
详细信息    查看全文
  • 作者:Alexandra Rodríguez (1)
    Jorge Durán (1)
    José María Fernández-Palacios (2)
    Antonio Gallardo (1)
  • 关键词:forest wildfire ; ionic exchange membrane ; SADIE ; soil nutrient availability ; spatial heterogeneity ; feu de forêt ; membrane d’échange ionique ; SADIE ; disponibilité des éléments nutritifs ; du sol ; rogénéi spatiale
  • 刊名:Annals of Forest Science
  • 出版年:2009
  • 出版时间:January 2009
  • 年:2009
  • 卷:66
  • 期:2
  • 页码:210
  • 全文大小:606KB
  • 参考文献:1. Alauzis M.V., Mazzarino M.J., Raffaele E., and Roselli L., 2004. Wildfires in NW Patagonia: long-term effects on a / Nothofagus forest soil. For. Ecol. Manage. 192: 131-42. CrossRef
    2. Allen S.E., Grimshaw H.M. and Rowland A.P., 1986. Chemical analysis. In: Moore P.D. and Chapman S.B. (Eds.), Methods in plant ecology, Blackwell Scientific Publications, Oxford, pp. 285-44.
    3. Antonovics J., Clay K., and Schmitt J., 1987. The measurement of small-scale environmental heterogeneity using clonal transplants of / Anthoxanthum odoratum and / Danthonia spicata. Oecologia 71: 601-07. CrossRef
    4. Augustine D.J. and Frank D.A., 2001. Effects of migratory grazers on spatial heterogeneity of soil nitrogen properties in a grassland ecosystem. Ecology 82: 3149-162. CrossRef
    5. Barrett J.E., Virginia R.A., and Wall D.H., 2002. Trends in resin and KCL-extractable soil nitrogen across landscape gradients in Taylor Valley, Antarctica. Ecosystems 5: 289-99. CrossRef
    6. Brahim M.B., Loustau D., Gaudillère J.P., and Saur E., 1996. Effects of phosphate deficiency on photosynthesis and accumulation of starch and soluble sugars in 1-year-old seedlings of maritime pine ( / Pinus pinaster Ait.). Ann. Sci. For. 53: 801-10. CrossRef
    7. Cain M.L., Subler S., Evans J.P., and Fortin M.J., 1999. Sampling spatial and temporal variation in soil nitrogen availability. Oecologia 118: 397-04. CrossRef
    8. Carreira J.A., Niell F.X., and Lajtha K., 1994. Soil nitrogen availability and nitrification in Mediterranean shrublands of varying fire history and successional stage. Biogeochemistry 26: 189-09. CrossRef
    9. Certini G., 2005. Effects of fire on properties of forest soils: a review. Oecologia 143: 1-0. CrossRef
    10. Christensen N.L., 1973. Fire and the nitrogen cycle in California chaparral. Science 181: 66-8. ence.181.4094.66">CrossRef
    11. Climent J., Tapias R., Pardos J.A., and Gil L., 2004. Fire adaptations in the Canary Islands pine ( / Pinus canariensis). Plant Ecol. 171: 185-96. CrossRef
    12. D’Angelo E., Crutchfield J., and Vandiviere M., 2001. Rapid, sensitive, microscale determination of phosphate in water and soil. J. Environ. Qual. 30: 2206-209. CrossRef
    13. De las Heras J., Bonilla M., and Martínez L.W., 2005. Early vegetation dynamics of / Pinus tropicalis Morelet forests after experimental fire (W Cuba). Ann. For. Sci. 62: 771-77. CrossRef
    14. DeLuca T.H. and Sala A., 2006. Frequent fire alters nitrogen transformations in ponderosa pine stands of the Inland Northwest. Ecology 87: 2511-522. CrossRef
    15. FAO, 1996. Digital soil map of the world and derived soil properties. Derived from the FAO / UNESCO soil map of the world. FAO, Rome.
    16. Fraterrigo J.M., Turner M.G., Pearson S.M., and Dixon P., 2005. Effects of past land use on spatial heterogeneity of soil nutrients in southern Appalachian forests. Ecol. Monogr. 75: 215-30. CrossRef
    17. Gallardo A., 2003. Spatial variability of soil properties in a floodplain forest in northwest Spain. Ecosystems 6: 564-76. CrossRef
    18. Gallardo A., Parama R., and Covelo F., 2006. Differences between soil ammonium and nitrate spatial pattern in six plant communities. Simulated effect on plant populations. Plant Soil 279: 333-46. CrossRef
    19. González J.R., Palahí M., Trasobares A., and Pukkala T., 2006. A fire probability model for forest stands in Catalonia (north-east Spain). Ann. For. Sci. 63: 169-76. CrossRef
    20. Grogan P., Bruns T.D., and Chapin III F.S., 2000. Fire effects on ecosystem nitrogen cycling in a Californian bishop pine forest. Oecología 122: 537-44. CrossRef
    21. Gross K.L., Pregitzer K.S., and Burton A.J., 1995. Spatial variation in nitrogen availability in three successional plant communities. J. Ecol. 83: 357-67. CrossRef
    22. Guo D., Mou P., Jones R.H., and Mitchel R.J., 2002. Temporal changes in spatial patterns of soil moisture following disturbance: an experimental approach. J. Ecol. 90: 338-47. CrossRef
    23. Hirobe M., Tokuchi N., Wachrinrat C., and Taeda H., 2003. Fire history influences on the spatial heterogeneity of soil nitrogen transformations in three adjacent stands in a dry tropical forest in Thailand. Plant Soil 249: 309-18. CrossRef
    24. Hollander M. and Wolfe D.A., 1999. Nonparametric Statistical Methods, 2nd ed., John Wiley & Sons, New York, 817 p.
    25. Huang W.Z. and Schoenau J.J., 1997. Seasonal and spatial variations in soil nitrogen and phosphorus supply rates in a boreal aspen forest. Can. J. Soil Sci. 77: 597-12. CrossRef
    26. Hutchings M.J., John E.A., and Wijesinghea D.K., 2003. Toward understanding the consequences of soil heterogeneity for plant populations and communities. Ecology 84: 2322-334. CrossRef
    27. Jackson R.B. and Caldwell M.M., 1993. Geostatistical patterns of soil heterogeneity around individual perennial plants. J. Ecol. 81: 683-92. CrossRef
    28. Maestre F.T. and Quero J.L., 2008. Análisis espacial mediante índices de distancia (SADIE). In: Maestre F.T., Escudero A., and Bonet A. (Eds.), Introducción al Análisis Espacial de Datos en Ecología y Ciencias Ambientales: Métodos y Aplicaciones, AEET-CAM.
    29. Miller R.E., ver Hoef J.M., and Fowler N.L., 1995. Spatial heterogeneity in eight central Texas grasslands. J. Ecol. 83: 919-28. CrossRef
    30. Nicotra A.B., Chazdon R.L., and Iriarte S.V.B., 1999. Spatial heterogeneity of light and woody seedling regeneration in tropical wet forests. Ecology 80: 1908-926. CrossRef
    31. Perry J.N., 1998. Measures of spatial pattern for counts. Ecology 79: 1008-017. CrossRef
    32. Perry J.N. and Dixon P., 2002. A new method to measure spatial association for ecological count data. Ecoscience 9: 133-41.
    33. Perry J.N., Winder L., Holland J.M., and Alston R.D., 1999. Red-blue plots for detecting clusters in count data. Ecol. Lett. 2: 106-13. CrossRef
    34. Quian P. and Schoenau J.J., 2002. Practical applications of ion exchange resins in agricultural and environmental soil research. Can. J. Soil Sci. 82: 9-1. CrossRef
    35. Quintana J.R., Moreno A.M., and Parra J.G., 2007. Effect of heating on mineral components of the soil organic horizon from a Spanish juniper ( / Juniperus thurifera L.) woodland. J. Arid Environ. 71: 45-6. env.2007.03.002">CrossRef
    36. R Development Core Team, 2007. R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna.
    37. Raison R.J., 1979. Modification of the soil environment by vegetation fires, with particular reference to nitrogen transformations: a review. Plant Soil 51: 73-08. CrossRef
    38. Robertson G.P. and Gross C.L., 1994. Assessing the heterogeneity of belowground resources: quantifying pattern and scale. In: Caldwell M.M. and Pearcy R.W. (Eds.), Plant exploitation of environmental heterogeneity, academic press, New York, pp. 237-53.
    39. Robertson G.P., Klingesnsmith K.M., Klug M.J., Paul E.A., Crum J.R., and Ellis B.G., 1997. Soil resources, microbial activity, and primary production across an agricultural ecosystem. Ecol. Appl. 7: 158-70. CrossRef
    40. Romanya J., Casals P., and Vallejo V.R., 2001. Short-term effects of fire on soil nitrogen availability in mediterranean grasslands and shrublands growing in old fields. For. Ecol. Manage. 147: 39-3. CrossRef
    41. Ryel R.J., Caldwell M.M., and Manwaring J.H., 1996. Temporal dynamics of soil spatial heterogeneity in sagebrush-wheatgrass steppe during a growing season. Plant Soil 184: 299-09. CrossRef
    42. Schlesinger W.H., 1997. Biogeochemistry: an analysis of global change, Academic Press, Orlando, 614 p.
    43. Schlesinger W.H., Raikes J.A., Hartley A.E., and Cross A.F., 1996. On the spatial pattern of soil nutrients in desert ecosystems. Ecology 77: 364-74. CrossRef
    44. Sims G.K., Ellsworth T.R., and Mulvaney R.L., 1995. Microscale determination of inorganic nitrogen in water and soil extracts. Commun. Soil Sci. Plant. 26: 303-16. CrossRef
    45. Smeck N.E., 1985. Phosphorus dynamics in soils and landscape. Geoderma 36: 185-99. CrossRef
    46. Subler S., Blair J.M., and Edwards C.A., 1995. Using anion-exchange membranes to measure soil nitrate availability and net nitrification. Soil Biol. Biochem. 27: 911-17. CrossRef
    47. Turner M.G., Smithwick E.A., Metzger K.L., Tinker D.B., and Romme W.H., 2007. Inorganic nitrogen availability after severe standreplacing fire in the Greater Yellowstone ecosystem. Proc. Natl. Acad. Sci. USA 104: 4782-789. CrossRef
    48. Vitousek P.M. and Howarth R.W., 1991. Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry 13: 87-15. CrossRef
    49. Wienhold B.J. and Klemmedson J.O., 1992. Effect of prescribed fire on nitrogen and phosphorus in Arizona chaparral soil-plant systems. Arid Soil Research and Rehabilitation 6: 285-96.
    50. Yermakov Z. and Rothstein R., 2006. Changes in soil carbon and nitrogen cycling along a 72-year wildfire chronosequence in Michigan jack pine forests. Oecologia 149: 690-00. CrossRef
    51. Ziadi N., Simard R.R., Allard A., and Lafond J., 1999. Field evolution of anion exchange membranes as a N soil testing method for grasslands. Can. J. Soil Sci. 79: 281-94. CrossRef
    52. Ziadi N., Simard R.R., Allard A., and Parent G., 2000. Yield response of grass forage to N fertilizer as related to spring soil nitrate sorbed on anionic exchange membranes (AEMs). Can. J. Soil Sci. 80: 203-12. CrossRef
  • 作者单位:Alexandra Rodríguez (1)
    Jorge Durán (1)
    José María Fernández-Palacios (2)
    Antonio Gallardo (1)

    1. Department of Physics, Chemical and Natural Systems, University Pablo de Olavide, 41013, Seville, Spain
    2. Department of Parasitology, Ecology and Genetics, University La Laguna, 38207, La Laguna, Spain
文摘
-Soil resources are heterogeneously distributed in terrestrial plant communities. This heterogeneity is important because it determines the availability of local soil resources. A forest fire may change the spatial distribution of soil nutrients, affecting nutrition and survival of colonizing plants. However, specific information on the effects of ecosystem disturbance on the spatial distribution of soil resources is scarce. -We hypothesized that, on a short-term basis, wildfire would change the spatial patterns of soil N and P availability. To test this hypothesis, we selected two Pinus canariensis forests burned in 2005 and 2000, respectively, and a third forest that was unburned since at least 1990 (unburned). We incubated ionic exchange membranes (IEMs) in replicated plots to estimate soil N and P availability and characterized the spatial pattern using SADIE (Spatial Analysis by Distance Indices). -Mineral N, NO3-N and PO4-P availability, and aggregation and cluster indices for all nutrients were higher in the 2005 wildfire plots than in the 2000 wildfire and unburned plots. -Our results suggest that surviving plants or new individuals becoming established in a burned area would find higher soil resources, but also higher small-scale heterogeneity in nutrients, which may have a major impact on the performance of individual plants and on the forest structure and dynamics.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700