A new bioclimatic model calibrated with vegetation for Mediterranean forest areas
详细信息    查看全文
  • 作者:Michel Vennetier (1)
    Christian Ripert (1)
    Eric Maille (1)
    Laurence Blanc (2)
    Franck Torre (3)
    Philip Roche (1)
    Thierry Tatoni (3)
    Jean-Jacques Brun (4)
  • 关键词:bioclimatic model ; Mediterranean forest ; water availability ; floristic analysis ; PLS regression ; Provence ; modèle bioclimatique ; forêt méditerranéenne ; disponibilité en eau ; analyse floristique ; régression PLS ; Provence
  • 刊名:Annals of Forest Science
  • 出版年:2008
  • 出版时间:January 2008
  • 年:2008
  • 卷:65
  • 期:7
  • 页码:711
  • 全文大小:893KB
  • 参考文献:1. Archaux F., Berges L., and Chevalier R., 2007. Are plant censuses carried out on small quadrats more reliable than on larger ones? Plant Ecol. 188: 179-90. CrossRef
    2. Archaux F., Gosselin F., Berges L., and Chevalier R., 2006. Effects of sampling time, species richness and observer on the exhaustiveness of plant censuses. J. Veg. Sci. 17: 299-06. CrossRef
    3. Becker M., 1979. Une étude phyto-écologique sur les plateaux calcaires du Nord-Est (Massif de Haye, 54). Utilisation de l’AFC dans la typologie des stations. Relations avec la productivi et la quali du hêtre et du chêne. Ann. Sci. For. 36: 93-24. CrossRef
    4. Becker M., 1984. Indices de climat lumineux selon la pente et l’exposition pour les latitudes de 40 à 50°. Bull. Ecol. 15: 239-52.
    5. Ben Wu X. and Smeins F.E., 2000. Multiple-scale habitat modeling approach for rare plant conservation. Landsc. Urban Plan. 51: 11-8. CrossRef
    6. Berges L., Gégout J.C., and Franc A., 2006. Can understory vegetation accurately predict site index? A comparative study using floristic and abiotic indices in sessile oak ( / Quercus petraea Liebl.) stands in northern France. Ann. For. Sci. 63: 31-2. CrossRef
    7. Braun-Blanquet J., 1932. Plant sociology. The study of plant communities. McGraw-Hill, New-York.
    8. Cary G.J., Keane R.E., Gardner R.H., Lavorel S., Flannigan M.D., Davies I.D., Li C., Lenihan J.M., Rupp T.S., and Mouillot F., 2006. Comparison of the sensitivity of landscape-fire-succession models to variation in terrain, fuel pattern, climate and weather. Landsc. Ecol. 21: 121-37. CrossRef
    9. Chase J.M. and Leibold M.A., 2003. Ecological niches. University of Chicago Press, Chicago.
    10. Clark J.S., Silman M., Kern R., Macklin E., and Hillerislambers J., 1999. Seed dispersal near and far: Patterns across temperate and tropical forests. Ecology 80: 1475-494. CrossRef
    11. Cramer R.D.I., Bunce J.D., Paterson D.E., and Frank I.E., 1988. Crossvalidation, bootstrapping, and partial least square compared with multiple regression in conventional QSAR studies. Quantit Struct.-Act. Relatsh. 7: 18-5. CrossRef
    12. Daget P., 1977. Le bioclimat méditerranéen: caractères généraux, modes de caracrisation. Vegetatio, 34: 1-0. CrossRef
    13. Escofier B. and Pages J., 1994. Multiple Factor analysis. Comput. Stat. Data Anal. 18: 121-40. CrossRef
    14. Franklin J., 1998. Predicting the distribution of shrub species in southern California from climate and terrain-derived variables. J. Veg. Sci. 9: 733-48. CrossRef
    15. Franklin J., 2002. Enhancing a regional vegetation map with predictive models of dominant plant species in chaparral. Appl. Veg. Sci. 5: 135-46. CrossRef
    16. Gégout J.-C., Coudun C., Bailly G., and Jabiol B., 2005. EcoPlant: a forest sites database to link floristic data with soil resources and climatic conditions. J. Veg. Sci. 16: 257-60. CrossRef
    17. Gégout J.C., Hervé J.C., Houllier F., and Pierrat J.C., 2003. Prediction of forest soil nutrient status using vegetation. J. Veg. Sci. 14: 55-2. CrossRef
    18. Guiot J., 1991. Methods and programs of statistics for paleoclimatology and paleoecology, J. Guiot & L. Labeyrie Ed., Marseille.
    19. Guisan A., Edwards T.C., and Hastie T., 2002. Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecol. Model. 157: 89-00. CrossRef
    20. Hesselbjerg-Christiansen J. and Hewitson B., 2007. Regional Climate Projection. In: IPCC (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Solomon S., Qin D., Manning M., Chen Z., Marquis M., Averyt K.B., Tignor M., and Miller H.L., (Eds.), Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996 p.
    21. Jump A.S. and Penuelas J., 2005. Running to stand still: adaptation and the response of plants to rapid climate change. Ecol. Lett. 8: 1010-020. CrossRef
    22. Lagacherie P., Legros J.P., and Burrough P.A., 1995. A soil survey procedure using the knowledge of soil pattern established on a previously mapped reference area. geoderma 65: 283-01. CrossRef
    23. Le Houérou H.N., 2005. The isoclimatic mediterranean biomes: bioclimatology, diversity and phytogeography, Vol. 1 and 2. Le Houérou ed., Montpellier.
    24. Leibold M.A., Holyoak M., Mouquet N., Amarasekare P., Chase J.M., Hoopes M.F., Holt R.D., Shurin J.B., Law R., Tilman D., Loreau M., and Gonzalez A., 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecol. Lett. 7: 601-13. CrossRef
    25. Mao J.F., Wang B., Dai Y.J., Woodward F.I., Hanson P.J., and Lomas M.R., 2007. Improvements of a dynamic global vegetation model and simulations of carbon and water at an upland-oak forest. Adv. Atmos. Sci. 24: 311-22. CrossRef
    26. Meetenmeyer R.K., Moody A., and Franklin J., 2001. Landscape-scale patterns of shrub-species abundance in California chaparral -The role of topographically mediated resource gradients. Plant Ecol. 156: 19-1. CrossRef
    27. R_Development_Core_Team, 2004. R: A language and environment for statistical computing. R Foundation for Statistical Computing, R Foundation for Statistical Computing.
    28. Rameau J.-C., Mansion D., Dumé G., Timbal J., Lecointe A., Dupont P., and Keller R., 1989. Flore forestière fran?aise. Guide écologique illustré, 1, Plaines et Collines. Institut pour le Développement Forestier, Paris.
    29. Rathgeber C., Nicault A., Kaplan J.O., and Guiot J., 2003. Using a biogeochemistry model in simulating forests productivity responses to climatic change and [CO2] increase: example of / Pinus halepensis in Provence (south-east France). Ecol. Model. 166: 239-55. CrossRef
    30. Scull P., Franklin J., Chadwick O.A., and Mcarthur D., 2003. Predictive soil mapping: a review. Prog. Phys. Geogr. (27)2: 171-97. CrossRef
    31. Tenenhaus M., 1998. La régression PLS. Théorie et pratiques. Editions Technip, Paris.
    32. Ter-Braak C.J.T. and Juggins S., 1993. Weighted averaging partial least square regression (WA-PLS): an improved method for reconstructing environnemental variables from species assemblages. Hydrobiologia 269/270: 485-02. CrossRef
    33. Thioulouse J., Chessel D., Doledec S., and Olivier J.M., 1997. ADE-4: a multivariate analysis and graphical display software. Stat. Comput. 7: 75-3. CrossRef
    34. Vennetier M., 2007. Un nouveau modèle bioclimatique pour la forêt méditerranéenne. Application à l’étude de l’impact du changement climatique sur la végétation et à l’évaluation de la productivi forestière. Thèse de doctorat, UR écosystèmes méditerranéens et risques, Cemagref / Universi Paul Cézanne (Aix-Marseille III) Aix en Provence.
    35. Vogiatzakis I.N., Griffiths G.H., 2006. A GIS-based empirical model for vegetation prediction in Lefka Ori, Crete. Plant Ecol. 184: 311-23. CrossRef
    36. Zimmermann N.E., Kienast F., 1999. Predictive mapping of alpine grasslands in Switzerland: Species versus community approach. J Veg Sci (10) 4: 469-82. CrossRef
  • 作者单位:Michel Vennetier (1)
    Christian Ripert (1)
    Eric Maille (1)
    Laurence Blanc (2)
    Franck Torre (3)
    Philip Roche (1)
    Thierry Tatoni (3)
    Jean-Jacques Brun (4)

    1. UR écosystèmes Méditerranéens et Risques, Cemagref, Aix en Provence, France
    2. Délégation Régionale Midi-Pyrénées-Aquitaine, ONEMA, France
    3. Institut Méditerranéen d’Ecologie et Paléoécologie, UMR 6116, Universi Paul Cézanne, Marseille, France
    4. UR écosystèmes Montagnards, Cemagref, Grenoble, France
文摘
-Water availability is one of the main factors explaining flora composition and growth in Mediterranean regions, where it may decline with climate change. -Our goal was to develop a model for forest site assessment in Mediterranean environments, focusing on water availability to assess potential vegetation composition and productivity in any places, whatever their level of disturbance. -We designed a statistical model, using global climatic and geographic variables, as well as detailed local topographic and edaphic variables, to compute a bioclimatic index for Mediterranean forest environments. This model was calibrated in France with a flora index from 325 old forests. The model explained 80.3% of the flora index variance. The method fills a gap in existing models, bridging scales from the region to forest sites. -Beyond its theoretical aspect, it was designed to allow practical tools to be derived from it for decision-making and management, such as the assessment of climate change impact on vegetation, and of forest productivity. Its development and adaptation is possible in other Mediterranean regions, and in any region where water is one of the main limiting factors.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700