alias bioputing—has been explored for decades. These materials include DNA, RNA and proteins, while the processes include transcription, translation, signal transduction and regulation. Recently, the use of bacteria themselves as living computers has been explored but this use generally falls within the classical paradigm of computing. Computer scientists, however, have a variety of problems to which they seek solutions, while microbiologists are having new insights into the problems bacteria are solving and how they are solving them. Here, we envisage that bacteria might be used for new sorts of computing. These could be based on the capacity of bacteria to grow, move and adapt to a myriad different fickle environments both as individuals and as populations of bacteria plus bacteriophage. New principles might be based on the way that bacteria explore phenotype space via hyperstructure dynamics and the fundamental nature of the cell cycle. This computing might even extend to developing a high level language appropriate to using populations of bacteria and bacteriophage. Here, we offer a speculative tour of what we term bactoputing, namely the use of the natural behaviour of bacteria for calculating." />
Computing with bacterial constituents, cells and populations: from bioputing to bactoputing
详细信息    查看全文
  • 作者:Vic Norris (1) (2)
    Abdallah Zemirline (1) (3)
    Patrick Amar (1) (4)
    Jean Nicolas Audinot (5)
    Pascal Ballet (1) (3)
    Eshel Ben-Jacob (6)
    Gilles Bernot (1) (7)
    Guillaume Beslon (1) (8)
    Armelle Cabin (1) (2)
    Eric Fanchon (1) (9)
    Jean-Louis Giavitto (1) (10)
    Nicolas Glade (1) (9)
    Patrick Greussay (1) (11)
    Yohann Grondin (1) (2)
    James A. Foster (12)
    Guillaume Hutzler (1) (10)
    Jürgen Jost (16) (17)
    Francois Kepes (1)
    Olivier Michel (1) (13)
    Franck Molina (1) (14)
    Jacqueline Signorini (1) (11)
    Pasquale Stano (15)
    Alain R. Thierry (1) (14)
  • 关键词:Biological computing ; Bacteria ; Minimal cell ; Synthetic biology ; Turing ; Origin of life ; Computer science
  • 刊名:Theory in Biosciences
  • 出版年:2011
  • 出版时间:September 2011
  • 年:2011
  • 卷:130
  • 期:3
  • 页码:211-228
  • 全文大小:374KB
  • 参考文献:1. Aarsman ME, Piette A, Fraipont C, Vinkenvleugel TM, Nguyen-Disteche M et al (2005) Maturation of the / Escherichia coli divisome occurs in two steps. Mol Microbiol 55:1631-645 CrossRef
    2. Adamatzky A, de Lacy Costello B (2002) Collision-free path planning in the Belousov-Zhabotinsky medium assisted by a cellular automaton. Naturwissenschaften 89:474-78 CrossRef
    3. Adleman LM (1994) Molecular computation of solutions to combinatorial problems. Science 266:1021-024 CrossRef
    4. Amar P, Ballet P, Barlovatz-Meimon G, Benecke A, Bernot G et al (2002) Hyperstructures, genome analysis and I-cell. Acta Biotheor 50:357-73 CrossRef
    5. Amar P, Bernot G, Norris V (2004) HSIM: a simulation programme to study large assemblies of proteins. J Biol Phys Chem 4:79-4. http://www.lri.fr/~pa/Hsim/JBPC_04.pdf
    6. Amar P, Legent G, Thellier M, Ripoll C, Bernot G et al (2008) A stochastic automaton shows how enzyme assemblies may contribute to metabolic efficiency. BMC Syst Biol 2:27 CrossRef
    7. Atkinson MR, Savageau MA, Myers JT, Ninfa AJ (2003) Development of genetic circuitry exhibiting toggle switch or oscillatory behavior in / Escherichia coli. Cell 113:597-07 CrossRef
    8. Avery SV (2006) Microbial cell individuality and the underlying sources of heterogeneity. Nat Rev Microbiol 4:577-87 CrossRef
    9. Baker M (2005) Better living through microbes. Nat Biotechnol 23:645-47 CrossRef
    10. Baker MD, Stock JB (2007) Signal transduction: networks and integrated circuits in bacterial cognition. Curr Biol 17:R1021–R1024 CrossRef
    11. Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S (2004) Bacterial persistence as a phenotypic switch. Science 305:1622-625 CrossRef
    12. Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5:101-13 CrossRef
    13. Basu S, Gerchman Y, Collins CH, Arnold FH, Weiss R (2005) A synthetic multicellular system for programmed pattern formation. Nature 434:1130-134 CrossRef
    14. Baumgardner J, Acker K, Adefuye O, Crowley ST, Deloache W et al (2009) Solving a Hamiltonian Path Problem with a bacterial computer. J Biol Eng 3:11 CrossRef
    15. Becskei A, Serrano L (2000) Engineering stability in gene networks by autoregulation. Nature 405:590-93 CrossRef
    16. Ben-Jacob E, Levine H (2005) Self-engineering capabilities of bacteria. J R Soc Interface. doi:10.1098/rsif.2005.0089
    17. Ben-Jacob E, Shapira Y (2004) Meaning-based natural intelligence vs. information-based artificial intelligence. In: Ben-Nun H (ed) The cradle of creativity. Shaarei Tzedek, Jerusalem
    18. Ben-Jacob E, Becker I, Shapira Y, Levine H (2004) Bacterial linguistic communication and social intelligence. Trends Microbiol 12:366-72 CrossRef
    19. Benenson Y, Gil B, Ben-Dor U, Adar R, Shapiro E (2004) An autonomous molecular computer for logical control of gene expression. Nature 429:423-29 CrossRef
    20. Ben-Jacob E (2003) Bacterial self-organization: co-enhancement of complexification and adaptability in a dynamic environment. Philos Trans A Math Phys Eng Sci 361:1283-312 CrossRef
    21. Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm intelligence. Oxford University Press, Oxford, p 320
    22. Booth IR (2002) Stress and the single cell: intrapopulation diversity is a mechanism to ensure survival upon exposure to stress. Int J Food Microbiol 78:19-0 CrossRef
    23. Bray D (1990) Intracellular signalling as a parallel distributed process. J Theor Biol 143:215-31 CrossRef
    24. Bulter T, Lee SG, Wong WW, Fung E, Connor MR et al (2004) Design of artificial cell-cell communication using gene and metabolic networks. Proc Natl Acad Sci USA 101:2299-304 CrossRef
    25. Cabrera JE, Jin DJ (2003) The distribution of RNA polymerase in / Escherichia coli is dynamic and sensitive to environmental cues. Mol Microbiol 50:1493-505 CrossRef
    26. Carbone A, Seeman NC (2002) Circuits and programmable self-assembling DNA structures. Proc Natl Acad Sci USA 99:12577-2582 CrossRef
    27. Conrad M (1995) Scaling of efficiency in programmable and non-programmable systems. Biosystems 35:161-66 CrossRef
    28. Das S, Lengweiler UD, Seebach D, Reusch RN (1997) Proof for a nonproteinaceous calcium-selective channel in / Escherichia coli by total synthesis from (R)-3-hydroxybutanoic acid and inorganic phosphate. Proc Natl Acad Sci USA 94:9075-079 CrossRef
    29. Dauphas S, Delhaye T, Lavastre O, Corlu A, Guguen-Guillouzo C et al (2008) Localization and quantitative analysis of antigen-antibody binding on 2D substrate using imaging NanoSIMS. Anal Chem 80:5958-962 CrossRef
    30. de Crecy-Lagard VA, Bellalou J, Mutzel R, Marliere P (2001) Long term adaptation of a microbial population to a permanent metabolic constraint: overcoming thymineless death by experimental evolution of / Escherichia coli. BMC Biotechnol 1:10 CrossRef
    31. Demarse TB, Wagenaar DA, Blau AW, Potter SM (2001) The neurally controlled Animat: biological brains acting with simulated bodies. Auton Robots 11:305-10 CrossRef
    32. Denning PJ, Comer DE, Gries D, Mulder MC, Tucker A et al (1989) Computing as a discipline. Commun ACM 32:9-3 CrossRef
    33. Doi RH, Kosugi A (2004) Cellulosomes: plant-cell-wall-degrading enzyme complexes. Nat Rev Microbiol 4:541-51 CrossRef
    34. Edelman G (1987) Neural Darwinism. The theory of neuronal group selection. Basic Books, New York
    35. Elowitz MB, Levine AJ, Siggia ED, Swain PS (2002) Stochastic gene expression in a single cell. Science 297:1183-186 CrossRef
    36. Engel GS, Calhoun TR, Read EL, Ahn TK, Mancal T et al (2007) Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446:782-86 CrossRef
    37. Farmer WR, Liao JC (2000) Improving lycopene production in / Escherichia coli by engineering metabolic control. Nat Biotechnol 18:533-37 CrossRef
    38. Fr?hlich H (1978) Coherent electric vibrations in biological systems and the cancer problem. IEEE Trans Microw Theory Tech MTT-S 26:613-17 CrossRef
    39. Gardner TS, Cantor CR, Collins JJ (2000) Construction of a genetic toggle switch in / Escherichia coli. Nature 403:339-42 CrossRef
    40. Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP-completeness. Freeman W.H., New York
    41. Gil R, Silva FJ, Pereto J, Moya A (2004) Determination of the core of a minimal bacterial gene set. Microbiol Mol Biol Rev 68:518-37 CrossRef
    42. Grangeasse C, Cozzone AJ, Deutscher J, Mijakovic I (2007) Tyrosine phosphorylation: an emerging regulatory device of bacterial physiology. Trends Biochem Sci 32:86-4 CrossRef
    43. Grover LK (1997) Quantum mechanics helps in searching for a needle in a haystack. Phys Rev Lett 79:325-28 CrossRef
    44. Guerquin-Kern JL, Wu TD, Quintana C, Croisy A (2005) Progress in analytical imaging of the cell by dynamic secondary ion mass spectrometry (SIMS microscopy). Biochim Biophys Acta 1724:228-38
    45. Guzman EC, Caballero JL, Jimenez-Sanchez A (2002) Ribonucleoside diphosphate reductase is a component of the replication hyperstructure in / Escherichia coli. Mol Microbiol 43:487-95 CrossRef
    46. Haken H (1983) Synergetics, an introduction: Nonequilibrium phase transitions and self-organization in physics, chemistry and biology. Springer, Berlin
    47. Hashimoto M, Ichimura T, Mizoguchi H, Tanaka K, Fujimitsu K et al (2005) Cell size and nucleoid organization of engineered / Escherichia coli cells with a reduced genome. Mol Microbiol 55:137-49 CrossRef
    48. Hunding A, Kepes F, Lancet D, Minsky A, Norris V et al (2006) Compositional complementarity and prebiotic ecology in the origin of life. BioEssays 28:399-12 CrossRef
    49. Ingber DE (1998) The architecture of life. Sci Am 278:30-9 CrossRef
    50. Ishihama Y, Schmidt T, Rappsilber J, Mann M, Hartl FU et al (2008) Protein abundance profiling of the / Escherichia coli cytosol. BMC Genomics 9:102 CrossRef
    51. Janniere L, Canceill D, Suski C, Kanga S, Dalmais B et al (2007) Genetic evidence for a link between glycolysis and DNA replication. PLoS ONE 2:e447 CrossRef
    52. Ji S (2009) Molecular theories of the living cell: conceptual foundations molecular mechanisms and applications. Springer, New York
    53. Jost J, Bertschinger N, Olbrich E (2010) Emergence. A dynamical systems approach. New Ideas Psychol 28:265-73 CrossRef
    54. Kauffman S (1996) At home in the Universe the search for the laws of complexity. Penguin, London, pp 1-21
    55. Kelso JAS (2008) Synergies: atoms of brain and behavior. In: Sternad D (ed) A multidisciplinary approach to motor control. Springer, Heidelberg
    56. Kobayashi K, Ehrlich SD, Albertini A, Amati G, Andersen KK et al (2003) Essential / Bacillus subtilis genes. Proc Natl Acad Sci USA 100:4678-683 CrossRef
    57. Kolodkin-Gal I, Hazan R, Gaathon A, Carmeli S, Engelberg-Kulka H (2007) A linear pentapeptide is a quorum-sensing factor required for mazEF-mediated cell death in / Escherichia coli. Science 318:652-55 CrossRef
    58. Kozlovsky Y, Cohen I, Golding I, Ben-Jacob E (1999) Lubricating bacteria model for branching growth of bacterial colonies. Phys Rev E 59:7025-035 CrossRef
    59. Laub MT, Goulian M (2007) Specificity in two-component signal transduction pathways. Annu Rev Genet 41:121-45 CrossRef
    60. Laub MT, McAdams HH, Feldblyum T, Fraser CM, Shapiro L (2000) Global analysis of the genetic network controlling a bacterial cell cycle. Science 290:2144-148 CrossRef
    61. Lechene C, Hillion F, McMahon G, Benson D, Kleinfeld AM et al (2006) High-resolution quantitative imaging of mammalian and bacterial cells using stable isotope mass spectrometry. J Biol 5:20 CrossRef
    62. Legent G, Delaune A, Norris V, Delcorte A, Gibouin D et al (2008) Method for macromolecular colocalization using atomic recombination in dynamics SIMS. J Phys Chem B 112:5534-546 CrossRef
    63. Levin-Zaidman S, Frenkiel-Krispin D, Shimoni E, Sabanay I, Wolf SG et al (2000) Ordered intracellular RecA-DNA assemblies: a potential site of in vivo RecA-mediated activities. Proc Natl Acad Sci USA 97:6791-796 CrossRef
    64. Llopis PM, Jackson AF, Sliusarenko O, Surovtsev I, Heinritz J et al (2010) Spatial organization of the flow of genetic information in bacteria. Nature 466:77-1 CrossRef
    65. Lopez D, Kolter R (2010) Functional microdomains in bacterial membranes. Genes Dev 24:1893-902 CrossRef
    66. Lopez D, Vlamakis H, Kolter R (2009) Generation of multiple cell types in / Bacillus subtilis. FEMS Microbiol Rev 33:152-63 CrossRef
    67. Luisi PL, Ferri F, Stano P (2006) Approaches to semi-synthetic minimal cells: a review. Naturwissenschaften 93:1-3 CrossRef
    68. Matic I, Taddei F, Radman M (2004) Survival versus maintenance of genetic stability: a conflict of priorities during stress. Res Microbiol 155:337-41 CrossRef
    69. Matsuhashi M, Pankrushina AN, Endoh K, Watanabe H, Ohshima H et al (1996) / Bacillus carboniphilus cells respond to growth-promoting physical signals from cells of homologous and heterologous bacteria. J Gen Appl Microbiol 42:315-23 CrossRef
    70. Matsuhashi M, Pankrushina AN, Takeuchi S, Ohshima H, Miyoi H et al (1998) Production of sound waves by bacterial cells and the response of bacterial cells to sound. J Gen Appl Microbiol 44:49-5 CrossRef
    71. Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165-99 CrossRef
    72. Minsky A, Shimoni E, Frenkiel-Krispin D (2002) Stress, order and survival. Nat Rev Mol Cell Biol 3:50-0 CrossRef
    73. Molina F, Skarstad K (2004) Replication fork and SeqA focus distributions in / Escherichia coli suggest a replication hyperstructure dependent on nucleotide metabolism. Mol Microbiol 52:1597-612 CrossRef
    74. Mushegian AR, Koonin EV (1996) A minimal gene set for cellular life derived by comparison of complete bacterial genomes. Proc Natl Acad Sci USA 93:10268-0273 CrossRef
    75. Nakabachi A, Yamashita A, Toh H, Ishikawa H, Dunbar HE et al (2006) The 160-kilobase genome of the bacterial endosymbiont carsonella. Science 314:267 CrossRef
    76. Noireaux V, Libchaber A (2004) A vesicle bioreactor as a step toward an artificial cell assembly. Proc Natl Acad Sci USA 101:17669-7674 CrossRef
    77. Noireaux V, Bar-Ziv R, Godefroy J, Salman H, Libchaber A (2005) Toward an artificial cell based on gene expression in vesicles. Phys Biol 2:P1–P8 CrossRef
    78. Norris V (1998a) Bacteria as tools for studies of consciousness. In: Hameroff S, Kaszniak A, Scott A (eds) Toward a science of consciousness II: the second Tucson discussions and debates. MIT Press, Cambridge, pp 397-05
    79. Norris V (1998b) Modelling / E. coli: the concept of competitive coherence. Comptes Rendus de l’Academie des Sciences 321:777-87 CrossRef
    80. Norris V (2005) Poly-(R)-3-hydroxybutyrate and the pioneering work of Rosetta Natoli Reusch. Cell Mol Biol (Noisy-le-grand) 51:629-34
    81. Norris V, Hyland GJ (1997) Do bacteria “sing- Mol Microbiol 24:879-80 CrossRef
    82. Norris V, Madsen MS (1995) Autocatalytic gene expression occurs via transertion and membrane domain formation and underlies differentiation in bacteria: a model. J Mol Biol 253:739-48 CrossRef
    83. Norris V, Raine DJ (1998) A fission-fusion origin for life. Origins Life Evol Biosph 28:523-37 CrossRef
    84. Norris V, Amar P, Bernot G, Delaune A, Derue C et al (2004) Questions for cell cyclists. J Biol Phys Chem 4:124-30
    85. Norris V, Cabin A, Zemirline A (2005) Hypercomplexity. Acta Biotheor 53:313-30 CrossRef
    86. Norris V, Janniere L, Amar P (2007) Hypothesis: variations in the rate of DNA replication determine the phenotype of daughter cells. In: Amar P, Képès F, Norris V, Bernot G (eds) EDP sciences. Genopole, Evry, pp 71-1
    87. Novick RP, Geisinger E (2008) Quorum sensing in / Staphylococci. Annu Rev Genet 42:541-64 CrossRef
    88. Onoda T, Enokizono J, Kaya H, Oshima A, Freestone P et al (2000) Effects of calcium and calcium chelators on growth and morphology of / Escherichia coli L-form NC-7. J Bacteriol 182:1419-422 CrossRef
    89. Ozbudak EM, Thattai M, Lim HN, Shraiman BI, van Oudenaarden A (2004) Multistability in the lactose utilization network of / Escherichia coli. Nature 427:737-40 CrossRef
    90. Palkova Z (2004) Multicellular microorganisms: laboratory versus nature. EMBO Rep 5:470-76 CrossRef
    91. Palmen R, Vosman B, Buijsman P, Breek CK, Hellingwerf KJ (1993) Physiological characterization of natural transformation in / Acinetobacter calcoaceticus. J Gen Microbiol 139:295-05
    92. Park S, Wolanin PM, Yuzbashyan EA, Lin H, Darnton NC et al (2003a) Influence of topology on bacterial social interaction. Proc Natl Acad Sci USA 100:13910-3915 CrossRef
    93. Park S, Wolanin PM, Yuzbashyan EA, Silberzan P, Stock JB et al (2003b) Motion to form a quorum. Science 301:188 CrossRef
    94. Pfaffmann JO, Conrad M (2000) Adaptive information processing in microtubule networks. Biosystems 55:47-7 CrossRef
    95. Posfai G, Plunkett G III, Feher T, Frisch D, Keil GM et al (2006) Emergent properties of reduced-genome / Escherichia coli. Science 312:1044-046 CrossRef
    96. Possoz C, Filipe SR, Grainge I, Sherratt DJ (2006) Tracking of controlled / Escherichia coli replication fork stalling and restart at repressor-bound DNA in vivo. EMBO J 25:2596-604 CrossRef
    97. Rauch EM, Bar-Yam Y (2004) Theory predicts the uneven distribution of genetic diversity within species. Nature 431:449-52 CrossRef
    98. Ripoll C, Norris V, Thellier M (2004) Ion condensation and signal transduction. BioEssays 26:549-57 CrossRef
    99. Rocha E, Fralick J, Vediyappan G, Danchin A, Norris V (2003) A strand-specific model for chromosome segregation in bacteria. Mol Microbiol 49:895-03 CrossRef
    100. Rothemund PW, Papadakis N, Winfree E (2004) Algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biol 2:e424 CrossRef
    101. Sato K, Ito Y, Yomo T, Kaneko K (2003) On the relation between fluctuation and response in biological systems. Proc Natl Acad Sci USA 100:14086-4090 CrossRef
    102. Siddiqui RA, Hoischen C, Holst O, Heinze I, Schlott B et al (2006) The analysis of cell division and cell wall synthesis genes reveals mutationally inactivated ftsQ and mraY in a protoplast-type L-form of / Escherichia coli. FEMS Microbiol Lett 258:305-11 CrossRef
    103. Skretas G, Wood DW (2005) A bacterial biosensor of endocrine modulators. J Mol Biol 349:464-74 CrossRef
    104. Szostak JW, Bartel DP, Luisi PL (2001) Synthesizing life. Nature 409:387-90 CrossRef
    105. Thellier M, Legent G, Amar P, Norris V, Ripoll C (2006) Steady-state kinetic behaviour of functioning-dependent structures. FEBS J 273:4287-299 CrossRef
    106. Thomas R (1980) On the relation between the logical structure of systems and their ability to generate multiple steady states or sustained oscillations. Ser Synerg 9:180-93
    107. Tolker-Nielsen T, Holmstrom K, Boe L, Molin S (1998) Non-genetic population heterogeneity studied by in situ polymerase chain reaction. Mol Microbiol 27:1099-105 CrossRef
    108. Tsuda S, Zauner K-P, Gunji Y-P (2006) Robot control: from silicon circuitry to cells. In: Ijspeert AJ, Masuzawa T, Kusumoto S (eds) BioADIT 2006. Lecture Notes in Computer Science. Springer, Heidelberg, pp 20-2
    109. Van Regenmortel MHV (2004) Emergence in biology. In: Amar P, Comet J-P, Kepes F, Norris V (eds) Modelling and simulation of biological processes in the context of genomics. Genopole, Evry, pp 123-32
    110. Vohradsky J, Ramsden JJ (2001) Genome resource utilization during prokaryotic development. FASEB J 15:2054-056 CrossRef
    111. Wall ME, Hlavacek WS, Savageau MA (2004) Design of gene circuits: lessons from bacteria. Nat Rev Genet 5:34-2 CrossRef
    112. Wang Q, Suzuki A, Mariconda S, Porwollik S, Harshey RM (2005) Sensing wetness: a new role for the bacterial flagellum. EMBO J 24:2034-042 CrossRef
    113. Wang JD, Sanders GM, Grossman AD (2007) Nutritional control of elongation of DNA replication by (p)ppGpp. Cell 128:865-75 CrossRef
    114. You L, RSr Cox, Weiss R, Arnold FH (2004) Programmed population control by cell-cell communication and regulated killing. Nature 428:868-71 CrossRef
    115. Yu W, Sato K, Wakabayashi M, Nakaishi T, Ko-Mitamura EP et al (2001) Synthesis of functional protein in liposome. J Biosci Bioeng 92:590-93 CrossRef
    116. Zemirline A, Norris V (2007) Non-separability, multiple interactions and hypercomplexity. In: Amar P, Kepes F, Norris V, Bernot G (eds) EDP sciences. Evry, France, pp 99-02
    117. Zimmer MA, Szurmant H, Saulmon MM, Collins MA, Bant JS et al (2002) The role of heterologous receptors in McpB-mediated signalling in / Bacillus subtilis chemotaxis. Mol Microbiol 45:555-68 CrossRef
  • 作者单位:Vic Norris (1) (2)
    Abdallah Zemirline (1) (3)
    Patrick Amar (1) (4)
    Jean Nicolas Audinot (5)
    Pascal Ballet (1) (3)
    Eshel Ben-Jacob (6)
    Gilles Bernot (1) (7)
    Guillaume Beslon (1) (8)
    Armelle Cabin (1) (2)
    Eric Fanchon (1) (9)
    Jean-Louis Giavitto (1) (10)
    Nicolas Glade (1) (9)
    Patrick Greussay (1) (11)
    Yohann Grondin (1) (2)
    James A. Foster (12)
    Guillaume Hutzler (1) (10)
    Jürgen Jost (16) (17)
    Francois Kepes (1)
    Olivier Michel (1) (13)
    Franck Molina (1) (14)
    Jacqueline Signorini (1) (11)
    Pasquale Stano (15)
    Alain R. Thierry (1) (14)

    1. Epigenomics Project, Genopole Campus 1, Bat. Genavenir 6, 5 rue Henri Desbruères, 91030, évry Cedex, France
    2. Assemblages Moleculaires: Modelisation et Imagerie SIMS, EA 3829, Faculty of Science, University of Rouen, 76821, Mont-Saint-Aignan, France
    3. LISyC, EA3883, UBO, 20 avenue Le Gorgeu C.S. 93837 BP 809, 29238, Brest Cedex 3, France
    4. Laboratoire de Recherches en Informatique, University of Paris 11 & CNRS UMR 8623, 15 avenue George Clémenceau, 91405, Orsay Cedex, France
    5. Département Science et Analyse des Matériaux, Centre de Recherche Public-Gabriel Lippmann, 4422, Belvaux, Luxembourg
    6. School of Physics and Astronomy, Tel Aviv University, 69978, Tel Aviv, Israel
    7. Laboratoire I3S, Algorithmes-Euclide-B, University of Nice-Sophia Antipolis, 06903, Sophia Antipolis Cedex, France
    8. Computer Sciences Department, Institut National des Sciences Appliquées de Lyon, Batiment Blaise Pascal, 69621, Villeurbanne Cedex, France
    9. Laboratoire TIMC-IMAG, Faculty of Médecine, 38706, La Tronche, France
    10. Laboratory IBISC-LIS project, CNRS FRE 2873, University of Evry-Val d’Essonne, France Université de Paris XII, évry, France
    11. Advanced Computing Laboratory of Saint-Denis, University Paris 8, 93526, Saint-Denis, France
    12. Department of Biological Sciences, University of Idaho, Moscow, ID, 83844-3051, USA
    16. Max Planck Institute for Mathematics in the Sciences, Inselstr.22, 04103, Leipzig, Germany
    17. Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM, 87501, USA
    13. Lab. LACL-Bat P2-40, Faculté des sciences et technologies, 61 Av. du Général de Gaulle, 94010, Créteil Cedex, France
    14. Sysdiag UMR 3145-CNRS/BIO-RAD, Cap Delta 1682 Rue de la Valsiere, 34184, Montpellier Cedex 4, France
    15. Enrico Fermi Research Centre, Compendio del Viminale, 00184, Rome, Italy
文摘
The relevance of biological materials and processes to computing-em class="a-plus-plus">alias bioputing—has been explored for decades. These materials include DNA, RNA and proteins, while the processes include transcription, translation, signal transduction and regulation. Recently, the use of bacteria themselves as living computers has been explored but this use generally falls within the classical paradigm of computing. Computer scientists, however, have a variety of problems to which they seek solutions, while microbiologists are having new insights into the problems bacteria are solving and how they are solving them. Here, we envisage that bacteria might be used for new sorts of computing. These could be based on the capacity of bacteria to grow, move and adapt to a myriad different fickle environments both as individuals and as populations of bacteria plus bacteriophage. New principles might be based on the way that bacteria explore phenotype space via hyperstructure dynamics and the fundamental nature of the cell cycle. This computing might even extend to developing a high level language appropriate to using populations of bacteria and bacteriophage. Here, we offer a speculative tour of what we term bactoputing, namely the use of the natural behaviour of bacteria for calculating.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700