Comparative theoretical analysis of continuous wave laser cutting of metals at 1 and 10?μm wavelength
详细信息    查看全文
  • 作者:Michael H. Brügmann (1)
    Thomas Feurer (1)
  • 刊名:Applied Physics A: Materials Science & Processing
  • 出版年:2014
  • 出版时间:September 2014
  • 年:2014
  • 卷:116
  • 期:3
  • 页码:1353-1364
  • 全文大小:792 KB
  • 参考文献:1. L.D. Scintilla, L. Tricarico, A. Mahrle, A. Wetzig, E. Beyer, A comparative study of cut front profiles and absorptivity behavior for disk and \(\mathrm{CO_2}\) laser beam inert gas fusion cutting. J. Laser Appl.g class="a-plus-plus"> 24g>(5), 052006- (2012) g/10.2351/1.4755980" target="_blank" title="It opens in new window">CrossRef
    2. K. Hirano, R. Fabbro, Possible explanations for different surface quality in laser cutting with 1 and \(10 \mu\mathrm{m}\) beams. J. Laser Appl.g class="a-plus-plus"> 24g>(1), 012006- (2012) g/10.2351/1.3672477" target="_blank" title="It opens in new window">CrossRef
    3. M. Vicanek, G. Simon, H.M. Urbassek, I. Decker, Hydrodynamical instability of melt flow in laser cutting. J. Phys. D: Appl. Phys. g class="a-plus-plus">20g>, 140-45 (1987)
    4. C. Wandera, A. Salminen, V. Kujanpaa, Inert gas cutting of thick-section stainless and medium-section aluminum using a high power fiber laser. J. Laser Appl. g class="a-plus-plus">21g>(3), 154-61 (2009)
    5. C. Wandera, V. Kujanpaa, Characterization of the melt removal rate in laser cutting of thick-section stainless steel. J. Laser Appl. g class="a-plus-plus">22g>(2), 62-0 (2010)
    6. M. Vicanek, G. Simon, Momentum and heat transfer of an inert gas jet to the melt in laser cutting. J. Phys. D: Appl. Phys. g class="a-plus-plus">20g>, 1191-196 (1987)
    7. M. Sparkes, M. Gross, S. Celotto, T. Zhang, and W. O’Neill, Inert cutting of medium section stainless steel using a 2.2 kw high brightness fibre laser. In ICALEO 2006 Congress Proceedings, pp. 197-05, Orlando, FL, 2006. Laser Institute of America. Paper No. 402.
    8. A .Mahrle, E. Beyer, Theoretical aspects of fibre laser cutting. J. Phys. D: Appl. Phys. g class="a-plus-plus">42g>, 175597 (2009)
    9. F. O. Olsen, Laser cutting from \(\mathrm{CO}_2\) laser to disc or fiber laser-Possibilities and challenges. In ICALEO 2011 Congress Proceedings, pp. 6-5, Orlando, FL, 2011. Laser Institute of America. Paper No. 101.
    10. A. Riveiro, F. Quintero, F. Lusqui?os, J. Pou, A. Salminen, V. Kujanpaa. Influence of assist gas in fibre laser cutting of aluminum-copper alloy. In ICALEO 2008 Congress Proceedings, pp. 688-94, Orlando, FL, 2008. Laser Institute of America. Paper No. 2004.
    11. L.D. Scintilla, L. Tricarico, Estimating cutting front temperature difference in disk and \(\mathrm{CO}_2\) laser beam fusion cutting. Optics Laser Technol. g class="a-plus-plus">44g>, 1468-479 (2012)
    12. D. Petring, T. Molitor, F. Schneider, N. Wolf, Diagnostics, modeling and simulation: three keys towards mastering the cutting process with fiber, disk and diode lasers. Phys. Procedia g class="a-plus-plus">39g>, 186-96 (2012)
    13. V.G. Niziev, Theory of CW laser beam cutting. Laser Phys. g class="a-plus-plus">3g>(3), 629 (1993)
    14. V. G. Niziev, A. V. Nesterov, Influence of beam polarization on laser cutting efficiency. J. Phys. D: Appl. Phys. g class="a-plus-plus">32g>, 1455, (1999)
    15. M. Born, E. Wolf, / Principles of optics, Cambridge University Press, The Edinburgh Building, Cambridge CB2 2RU, UK, Sixth edition, (1997)
    16. J. A. Stratton, / Electromagnetic theory, McGraw-Hill Book Company, Inc., New York and London, (1941)
    17. A. Kaplan, / Theoretical analysis of laser cutting. Shaker Verlag, Aachen, (2002)
    18. W. Schulz, D. Becker, J. Franke, R. Kammerling, G. Herziger, Heat conduction losses in laser cutting of metals. J. Phys. D: Appl. Phys. g class="a-plus-plus">26g>, 1357-363 (1993)
    19. R. Courant, D. Hilbert, / Methods of Mathematical Physics, vol. 2, Interscience Publishers, New York, (1962)
    20. P.A. Bélanger, C. Paré, Optical resonators using graded-phase mirrors. Optics Lett. g class="a-plus-plus">16g>(14), 1057-059 (1991)
    21. P. Atanasov, Some aspects of high pressure \(\mathrm{N}_2\) -assisted \(\mathrm{CO}_2\) laser cutting of metals. In Proc. SPIE 1810, / 9th International Symposium on Gas Flow and Chemical Lasers, vol. 1810, pp. 628-31, May 1993
    22. M. Dell’Erba, G. Daurelio, M. Ferrara, \(\mathrm{CO}_2\) laser cutting process of thick aluminium. Appl. Phys. Commun. g class="a-plus-plus">5g>(1-), 23-5 (1985)
    23. G. Daurelio, M. Dell’Erba, L. Cento, Cutting copper sheets by \(\mathrm{CO}_2\) laser. Lasers Appl. pp. 59-4 (1986)
    24. S. Stelzer, A. Mahrle, A. Wetzig, E. Beyer, Experimental investigations on fusion cutting stainless steel with fiber and \(\mathrm{CO_2}\) laser beams. Phys. Procedia g class="a-plus-plus">41g>, 392-97 (2013)
    25. L.D. Scintilla, L. Tricarico, A. Wetzig, E. Beyer Investigation on disk and \(\mathrm{CO}_2\) laser beam fusion cutting differences based on power balance equation. Int. J. Mach. Tools Manuf. g class="a-plus-plus">69g>, 30-7 (2013)
    26. L.D. Scintilla, L. Tricarico, A. Wetzig, A. Mahrle, E. Beyer, Primary losses in disk and \(\mathrm{CO}_2\) laser beam inert gas fusion cutting. J. Mater. Process. Technol. g class="a-plus-plus">211g>, 2050-061 (2011)
  • 作者单位:Michael H. Brügmann (1)
    Thomas Feurer (1)

    1. Institute of Applied Physics, University of Bern, Sidlerstrasse 5, CH-3012, Bern, Switzerland
  • ISSN:1432-0630
文摘
We present a derivation and, based on it, an extension of a model originally proposed by V.G. Niziev to describe continuous wave laser cutting of metals. Starting from a local energy balance and by incorporating heat removal through heat conduction to the bulk material, we find a differential equation for the cutting profile. This equation is solved numerically and yields, besides the cutting profiles, the maximum cutting speed, the absorptivity profiles, and other relevant quantities. Our main goal is to demonstrate the model’s capability to explain some of the experimentally observed differences between laser cutting at around 1 and 10?μm wavelengths. To compare our numerical results to experimental observations, we perform simulations for exactly the same material and laser beam parameters as those used in a recent comparative experimental study. Generally, we find good agreement between theoretical and experimental results and show that the main differences between laser cutting with 1- and 10-μm beams arise from the different absorptivity profiles and absorbed intensities. Especially the latter suggests that the energy transfer, and thus the laser cutting process, is more efficient in the case of laser cutting with 1-μm beams.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700