Involvement of Neurotransmitters in the Action of the Nociceptin/Orphanin FQ Peptide-Receptor System on Passive Avoidance Learning in Rats
详细信息    查看全文
  • 作者:Miklós Palotai (1)
    ágnes Adamik (1)
    Gyula Telegdy (1) (2)
  • 关键词:Nociception/orphanin FQ ; Orphan GPCR SP9155 P550 ; Passive avoidance learning ; Neurotransmitters ; Receptor antagonits
  • 刊名:Neurochemical Research
  • 出版年:2014
  • 出版时间:August 2014
  • 年:2014
  • 卷:39
  • 期:8
  • 页码:1477-1483
  • 全文大小:671 KB
  • 参考文献:1. Civelli O (2008) The orphanin FQ/nociceptin (OFQ/N) system. Results Probl Cell Differ 46:1-5 CrossRef
    2. Zhang Y, Gandhi PR, Standifer KM (2012) Increased nociceptive sensitivity and nociceptin/orphanin FQ levels in a rat model of PTSD. Mol Pain 8:76 CrossRef
    3. Marti M, Viaro R, Guerrini R, Franchi G, Morari M (2009) Nociceptin/orphanin FQ modulates motor behavior and primary motor cortex output through receptors located in substantia nigra reticulata. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol 34:341-55 CrossRef
    4. Mallimo EM, Kusnecov AW (2013) The role of orphanin FQ/nociceptin in neuroplasticity: relationship to stress, anxiety and neuroinflammation. Front Cell Neurosci 7:173 CrossRef
    5. Gavioli EC, Calo G (2013) Nociceptin/orphanin FQ receptor antagonists as innovative antidepressant drugs. Pharmacol Ther 140:10-5 CrossRef
    6. Vazquez-DeRose J, Stauber G, Khroyan TV, Xie XS, Zaveri NT, Toll L (2013) Retrodialysis of N/OFQ into the nucleus accumbens shell blocks cocaine-induced increases in extracellular dopamine and locomotor activity. Eur J Pharmacol 699:200-06 CrossRef
    7. Caputi FF, Di Benedetto M, Carretta D, del Carmen Bastias, Candia S, D’Addario C, Cavina C, Candeletti S, Romualdi P (2014) Dynorphin/KOP and nociceptin/NOP gene expression and epigenetic changes by cocaine in rat striatum and nucleus accumbens. Prog Neuropsychopharmacol Biol Psychiatry 49:36-6 CrossRef
    8. Sandin J, Georgieva J, Schott PA, Ogren SO, Terenius L (1997) Nociceptin/orphanin FQ microinjected into hippocampus impairs spatial learning in rats. Eur J Neurosci 9:194-97 CrossRef
    9. Nabeshima T, Noda Y, Mamiya T (1999) The role of nociceptin in cognition. Brain Res 848:167-73 CrossRef
    10. Hawes BE, Graziano MP, Lambert DG (2000) Cellular actions of nociceptin: transduction mechanisms. Peptides 21:961-67 CrossRef
    11. New DC, Wong YH (2002) The ORL1 receptor: molecular pharmacology and signalling mechanisms. Neurosignals 11:197-12 CrossRef
    12. Darland T, Grandy DK (1998) The orphanin FQ system: an emerging target for the management of pain? Br J Anaesth 81:29-7 CrossRef
    13. Neal CR Jr, Mansour A, Reinscheid R, Nothacker HP, Civelli O, Akil H, Watson SJ Jr (1999) Opioid receptor-like (ORL1) receptor distribution in the rat central nervous system: comparison of ORL1 receptor mRNA expression with (125)I-[(14)Tyr]-orphanin FQ binding. J Comp Neurol 412:563-05 CrossRef
    14. Neal CR Jr, Mansour A, Reinscheid R, Nothacker HP, Civelli O, Watson SJ Jr (1999) Localization of orphanin FQ (nociceptin) peptide and messenger RNA in the central nervous system of the rat. J Comp Neurol 406:503-47 CrossRef
    15. Roozendaal B, Lengvilas R, McGaugh JL, Civelli O, Reinscheid RK (2007) Orphanin FQ/nociceptin interacts with the basolateral amygdala noradrenergic system in memory consolidation. Learn Mem 14:29-5 CrossRef
    16. Jiang Y, Luo L, Gustafson EL, Yadav D, Laverty M, Murgolo N, Vassileva G, Zeng M, Laz TM, Behan J, Qiu P, Wang L, Wang S, Bayne M, Greene J, Monsma F Jr, Zhang FL (2003) Identification and characterization of a novel RF-amide peptide ligand for orphan G-protein-coupled receptor SP9155. J Biol Chem 278:27652-7657 CrossRef
    17. Pellegrino LJ, Pellegrino AS, Cushman AJ (1979) A stereotaxic atlas of the rat brain. Plenum Press, New York
    18. Telegdy G, Adamik A (2002) The action of orexin A on passive avoidance learning. Involvement of transmitters. Regul Pept 104:105-10 CrossRef
    19. Telegdy G, Adamik A (2013) The action of kisspeptin-13 on passive avoidance learning in mice. Involvement of transmitters. Behav Brain Res 243:300-05 CrossRef
    20. Ader R, Weijnen JAWM, Moleman P (1972) Retention of a passive avoidance response as a function of the intensity and duration of electric shock. Psychon Sci 26:125-28 CrossRef
    21. Goda Y, Mutneja M (1998) Memory mechanisms: the nociceptin connection. Curr Biol CB 8:R889–R891 CrossRef
    22. Wallace TL, Bertrand D (2013) Importance of the nicotinic acetylcholine receptor system in the prefrontal cortex. Biochem Pharmacol 85:1713-720 CrossRef
    23. Mitsushima D, Sano A, Takahashi T (2013) A cholinergic trigger drives learning-induced plasticity at hippocampal synapses. Nat Commun 4:2760 CrossRef
    24. Ovsepian SV, Anwyl R, Rowan MJ (2004) Endogenous acetylcholine lowers the threshold for long-term potentiation induction in the CA1 area through muscarinic receptor activation: in vivo study. Eur J Neurosci 20:1267-275 CrossRef
    25. Tarr JC, Turlington ML, Reid PR, Utley TJ, Sheffler DJ, Cho HP, Klar R, Pancani T, Klein MT, Bridges TM, Morrison RD, Blobaum AL, Xiang Z, Daniels JS, Niswender CM, Conn PJ, Wood MR, Lindsley CW (2012) Targeting selective activation of M(1) for the treatment of Alzheimer’s disease: further chemical optimization and pharmacological characterization of the M(1) positive allosteric modulator ML169. ACS Chem Neurosci 3:884-95 CrossRef
    26. Hiramatsu M, Inoue K (1999) Nociceptin/orphanin FQ and nocistatin on learning and memory impairment induced by scopolamine in mice. Br J Pharmacol 127:655-60 CrossRef
    27. Hiramatsu M, Miwa M, Hashimoto K, Kawai S, Nomura N (2008) Nociceptin/orphanin FQ reverses mecamylamine-induced learning and memory impairment as well as decrease in hippocampal acetylcholine release in the rat. Brain Res 1195:96-03 CrossRef
    28. Michels L, Martin E, Klaver P, Edden R, Zelaya F, Lythgoe DJ, Luchinger R, Brandeis D, O’Gorman RL (2012) Frontal GABA levels change during working memory. PLoS One 7:e31933 CrossRef
    29. Lewis DA, Hashimoto T, Volk DW (2005) Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci 6:312-24 CrossRef
    30. Sardari M, Rezayof A, Khodagholi F, Zarrindast MR (2014) Basolateral amygdala GABA-A receptors mediate stress-induced memory retrieval impairment in rats. Int J Neuropsychopharmacol Off Sci J Coll Int Neuropsychopharmacol 4:603-12
    31. Uchiyama H, Yamaguchi T, Toda A, Hiranita T, Watanabe S, Eyanagi R (2008) Involvement of the GABA/benzodiazepine receptor in the axiolytic-like effect of nociceptin/orphanin FQ. Eur J Pharmacol 590:185-89 CrossRef
    32. Tajalli S, Jonaidi H, Abbasnejad M, Denbow DM (2006) Interaction between nociceptin/orphanin FQ (N/OFQ) and GABA in response to feeding. Physiol Behav 89:410-13 CrossRef
    33. Gholizadeh S, Sun N, De Jaeger X, Bechard M, Coolen L, Laviolette SR (2013) Early versus late-phase consolidation of opiate reward memories requires distinct molecular and temporal mechanisms in the amygdala–prefrontal cortical pathway. PLoS One 8:e63612 CrossRef
    34. Frenois F, Stinus L, Di Blasi F, Cador M, Le Moine C (2005) A specific limbic circuit underlies opiate withdrawal memories. J Neurosci Off J Soc Neurosci 25:1366-374 CrossRef
    35. Sun N, Chi N, Lauzon N, Bishop S, Tan H, Laviolette SR (2011) Acquisition, extinction, and recall of opiate reward memory are signaled by dynamic neuronal activity patterns in the prefrontal cortex. Cereb Cortex 21:2665-680 CrossRef
    36. Braida D, Gori E, Sala M (1994) Relationship between morphine and etonitazene-induced working memory impairment and analgesia. Eur J Pharmacol 271:497-04 CrossRef
    37. Gear RW, Bogen O, Ferrari LF, Green PG, Levine JD (2014) NOP receptor mediates anti-analgesia induced by agonist-antagonist opioids. Neuroscience 257:139-48 CrossRef
    38. Haggerty DC, Glykos V, Adams NE, Lebeau FE (2013) Bidirectional modulation of hippocampal gamma (20-0?Hz) frequency activity in vitro via alpha(alpha)- and beta(beta)-adrenergic receptors (AR). Neuroscience 253:142-54 CrossRef
    39. Gibbs ME, Bowser DN (2010) Astrocytic adrenoceptors and learning: alpha1-adrenoceptors. Neurochem Int 57:404-10 CrossRef
    40. Lazzaro SC, Hou M, Cunha C, LeDoux JE, Cain CK (2010) Antagonism of lateral amygdala alpha1-adrenergic receptors facilitates fear conditioning and long-term potentiation. Learn Mem 17:489-93 CrossRef
    41. Pierce RC, Kumaresan V (2006) The mesolimbic dopamine system: the final common pathway for the reinforcing effect of drugs of abuse? Neurosci Biobehav Rev 30:215-38 CrossRef
    42. Koizumi M, Midorikawa N, Takeshima H, Murphy NP (2004) Exogenous, but not endogenous nociceptin modulates mesolimbic dopamine release in mice. J Neurochem 89:257-63 CrossRef
    43. Moroz LL, Kohn AB (2011) Parallel evolution of nitric oxide signaling: diversity of synthesis and memory pathways. Front Biosci 16:2008-051 CrossRef
    44. Wei XM, Yang W, Liu LX, Qi WX (2013) Effects of l -arginine and N(omega)-nitro-l -arginine methylester on learning and memory and alpha7 nAChR expression in the prefrontal cortex and hippocampus of rats. Neurosci Bull 29:303-10 CrossRef
    45. Mabuchi T, Matsumura S, Okuda-Ashitaka E, Kitano T, Kojima H, Nagano T, Minami T, Ito S (2003) Attenuation of neuropathic pain by the nociceptin/orphanin FQ antagonist JTC-801 is mediated by inhibition of nitric oxide production. Eur J Neurosci 17:1384-392 CrossRef
    46. Tekes K, Tariq S, Adeghate E, Laufer R, Hashemi F, Siddiq A, Kalasz H (2013) Nociceptinergic system as potential target in Parkinson’s disease. Mini Rev Med Chem 13:1389-397 CrossRef
  • 作者单位:Miklós Palotai (1)
    ágnes Adamik (1)
    Gyula Telegdy (1) (2)

    1. Department of Pathophysiology, Faculty of Medicine, University of Szeged, Semmelweis Str. 1, Szeged, 6701, Hungary
    2. MTA-SZTE Neuroscience Research Group of the Hungarian Academy of Sciences, Szeged, Hungary
  • ISSN:1573-6903
文摘
The nociceptin/orphanin FQ peptide (NOP) receptor and its endogenous ligand plays role in several physiologic functions of the central nervous system, including pain, locomotion, anxiety and depression, reward and drug addiction, learning and memory. Previous studies demonstrated that the NOP-receptor system induces impairment in memory and learning. However, we have little evidence about the underlying neuromodulation. The aim of the present study was to investigate the involvement of distinct neurotransmitters in the action of the selective NOP receptor agonist orphan G protein-coupled receptor (GPCR) SP9155 P550 on memory consolidation in a passive avoidance learning test in rats. Accordingly, rats were pretreated with a nonselective muscarinic acetylcholine receptor antagonist, atropine, a γ-aminobutyric acid subunit A (GABA-A) receptor antagonist, bicuculline, a D2, D3, D4 dopamine receptor antagonist, haloperidol, a nonselective opioid receptor antagonist, naloxone, a non-specific nitric oxide synthase inhibitor, nitro-l-arginine, a nonselective α-adrenergic receptor antagonist, phenoxybenzamine and a β-adrenergic receptor antagonist, propranolol. Atropine, bicuculline, naloxone and phenoxybenzamine reversed the orphan GPCR SP9155 P550-induced memory impairment, whereas propranolol, haloperidol and nitro-l-arginine were ineffective. Our results suggest that the NOP system-induced impairment of memory consolidation is mediated through muscarinic cholinergic, GABA-A-ergic, opioid and α-adrenergic receptors, whereas β-adrenergic, D2, D3, D4-dopaminergic and nitrergic mechanisms are not be implicated.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700