Brain opioid and nociceptin receptors are involved in regulation of bombesin-induced activation of central sympatho-adrenomedullary outflow in the rat
详细信息    查看全文
  • 作者:Toshio Yawata ; Youichirou Higashi ; Takahiro Shimizu…
  • 关键词:Opioid receptor ; Nociceptin receptor ; Bombesin ; Brain ; Sympatho ; adrenomedullary system
  • 刊名:Molecular and Cellular Biochemistry
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:411
  • 期:1-2
  • 页码:201-211
  • 全文大小:961 KB
  • 参考文献:1.Bartolomucci A, Palanza P, Costoli T, Savani E, Laviola G, Parmigiani S, Sgoifo A (2003) Chronic psychosocial stress persistently alters autonomic function and physical activity in mice. Physiol Behav 80:57–67CrossRef PubMed
    2.Ulrich-Lai YM, Herman JP (2009) Neural regulation of endocrine and autonomic stress responses. Nat Rev Neurosci 10:397–409PubMedCentral CrossRef PubMed
    3.Fontes MA, Xavier CH, Marins FR, Limborço-Filho M, Vaz GC, Müller-Ribeiro FC, Nalivaiko E (2014) Emotional stress and sympathetic activity: contribution of dorsomedial hypothalamus to cardiac arrhythmias. Brain Res 1554:49–58CrossRef PubMed
    4.Tank AW, Lee Wong D (2015) Peripheral and central effects of circulating catecholamines. Compr Physiol 5:1–15PubMed
    5.Vanitallie TB (2002) Stress: a risk factor for serious illness. Metabolism 51:40–45CrossRef PubMed
    6.Esler M (2009) Heart and mind: psychogenic cardiovascular disease. J Hypertens 27:692–695CrossRef PubMed
    7.Grassi G, Seravalle G, Quarti-Trevano F (2010) The ‘neuroadrenergic hypothesis’ in hypertension: current evidence. Exp Physiol 95:581–586CrossRef PubMed
    8.Holden JE, Jeong Y, Forrest JM (2005) The endogenous opioid system and clinical pain management. AACN Clin 16:291–301CrossRef
    9.Drolet G, Dumont EC, Gosselin I, Kinkead R, Laforest S, Trottier JF (2001) Role of endogenous opioid system in the regulation of the stress response. Prog Neuropsychopharmacol Biol Psychiatry 25:729–741CrossRef PubMed
    10.Bilkei-Gorzo A, Racz I, Michel K, Mauer D, Zimmer A, Klingmüller D, Zimmer A (2008) Control of hormonal stress reactivity by the endogenous opioid system. Psychoneuroendocrinology 33:425–436CrossRef PubMed
    11.Bodnar RJ (2011) Endogenous opiates and behavior: 2010. Peptides 32:2522–2552CrossRef PubMed
    12.Dhawan BN, Cesselin F, Raghubir R, Reisine T, Bradley PB, Portoghese PS, Hamon M (1996) International union of pharmacology. XII. Classification of opioid receptors. Pharmacol Rev 48:567–592PubMed
    13.Zöllner C, Stein C (2007) Opioids. Handb Exp Pharmacol 177:31–63CrossRef PubMed
    14.Mogil JS, Pasternak GW (2001) The molecular and behavioral pharmacology of the orphanin FQ/nociceptin peptide and receptor family. Pharmacol Rev 53:381–415PubMed
    15.Le Merrer J, Becker JA, Befort K, Kieffer BL (2009) Reward processing by the opioid system in the brain. Physiol Rev 89:1379–1412PubMedCentral CrossRef PubMed
    16.McCubbin JA (1993) Stress and endogenous opioids: behavioral and circulatory interactions. Biol Psychol 35:91–122CrossRef PubMed
    17.Janssens CJ, Helmond FA, Loyens LW, Schouten WG, Wiegant VM (1995) Chronic stress increases the opioid-mediated inhibition of the pituitary-adrenocortical response to acute stress in pigs. Endocrinology 136:1468–1473PubMed
    18.Kawabe T, Kawabe K, Sapru HN (2012) Cardiovascular responses to chemical stimulation of the hypothalamic arcuate nucleus in the rat: role of the hypothalamic paraventricular nucleus. PLoS One 7:e45180PubMedCentral CrossRef PubMed
    19.Krowicki ZK, Kapusta DR (2006) Tonic nociceptinergic inputs to neurons in the hypothalamic paraventricular nucleus contribute to sympathetic vasomotor tone and water and electrolyte homeostasis in conscious rats. J Pharmacol Exp Ther 317:446–453CrossRef PubMed
    20.May CN, Whitehead CJ, Mathias CJ (1991) The pressor response to central administration of beta-endorphin results from a centrally mediated increase in noradrenaline release and adrenaline secretion. Br J Pharmacol 102:639–644PubMedCentral CrossRef PubMed
    21.Arndt ML, Wu D, Soong Y, Szeto HH (1999) Nociceptin/orphanin FQ increases blood pressure and heart rate via sympathetic activation in sheep. Peptides 20:465–470CrossRef PubMed
    22.Anastasi A, Erspamer V, Bucci M (1971) Isolation and structure of bombesin and alytesin, 2 analogous active peptides from the skin of the European amphibians Bombina and Alytes. Experientia 27:166–167CrossRef PubMed
    23.Jensen RT, Battery JF, Spindel ER, Benya RV (2008) International union of pharmacology. LXVIII. Mammalian bombesin receptors: nomenclature, distribution, pharmacology, signaling and functions in normal and disease states. Pharmacol Rev 60:1–42PubMedCentral CrossRef PubMed
    24.Merali Z, Kent P, Anisman H (2002) Role of bombesin-related peptides in the mediation or integration of the stress response. Cell Mol Life Sci 59:272–287CrossRef PubMed
    25.Yokotani K, Okada S, Nakamura K, Yamaguchi-Shima N, Shimizu T, Arai J, Wakiguchi H, Yokotani K (2005) Brain prostanoid TP receptor-mediated adrenal noradrenaline secretion and EP3 receptor-mediated sympathetic noradrenaline release in rats. Eur J Pharmacol 512:29–35CrossRef PubMed
    26.Tanaka K, Shimizu T, Yanagita T, Nemoto T, Nakamura K, Taniuchi K, Dimitriadis F, Yokotani K, Saito M (2014) Brain RVD-haemopressin, a haemoglobin-derived peptide, inhibits bombesin-induced central activation of adrenomedullary outflow in the rat. Br J Pharmacol 171:202–213PubMedCentral CrossRef PubMed
    27.Shimizu T, Okada S, Yamaguchi-Shima N, Yokotani K (2004) Brain phospholipase C-diacylglycerol lipase pathway is involved in vasopressin-induced release of noradrenaline and adrenaline from adrenal medulla in rats. Eur J Pharmacol 499:99–105CrossRef PubMed
    28.Paxinos G, Watson C (2005) In: Paxinos G, Watson C (eds) The rat brain in stereotaxic coordinates. Elsevier Academic Press, Burlington
    29.Anton AH, Sayre DF (1962) A study of the factors affecting the aluminum oxide-trihydroxyindole procedure for the analysis of catecholamines. J Pharmacol Exp Ther 138:360–375PubMed
    30.Martinez A, Padbury J, Shames L, Evans C, Humme J (1988) Naloxone potentiates epinephrine release during hypoxia in fetal sheep: dose response and cardiovascular effects. Pediatr Res 23:343–347CrossRef PubMed
    31.Appel NM, Kiritsy-Roy JA, van Loon GR (1986) Mu receptors at discrete hypothalamic and brainstem sites mediate opioid peptide-induced increases in central sympathetic outflow. Brain Res 378:8–20CrossRef PubMed
    32.May CN, Dashwood MR, Whitehead CJ, Mathias CJ (1989) Differential cardiovascular and respiratory responses to central administration of selective opioid agonists in conscious rabbits: correlation with receptor distribution. Br J Pharmacol 98:903–913PubMedCentral CrossRef PubMed
    33.Sun SY, Liu Z, Li P, Ingenito AJ (1996) Central effects of opioid agonists and naloxone on blood pressure and heart rate in normotensive and hypertensive rats. Gen Pharmacol 27:1187–1194CrossRef PubMed
    34.Kiritsy-Roy JA, Appel NM, Bobbitt FG, Van Loon GR (1986) Effects of mu-opioid receptor stimulation in the hypothalamic paraventricular nucleus on basal and stress-induced catecholamine secretion and cardiovascular responses. J Pharmacol Exp Ther 239:814–822PubMed
    35.Márki A, Monory K, Otvös F, Tóth G, Krassnig R, Schmidhammer H, Traynor JR, Roques BP, Maldonado R, Borsodi A (1999) Mu-opioid receptor specific antagonist cyprodime: characterization by in vitro radioligand and [35S]GTPγS binding assays. Eur J Pharmacol 383:209–214CrossRef PubMed
    36.Valentino RJ, Van Bockstaele E (2015) Endogenous opioids: the downside of opposing stress. Neurobiol Stress 1:23–32PubMedCentral CrossRef PubMed
    37.Kraft K, Diehl J, Stumpe KO (1991) Influence of chronic opioid delta receptor antagonism on blood pressure development and tissue contents of catecholamines and endogenous opioids in spontaneously hypertensive rats. Clin Exp Hypertens A 13:467–477PubMed
    38.Emmerson PJ, Liu MR, Woods JH, Medzihradsky F (1994) Binding affinity and selectivity of opioids at mu, delta and kappa receptors in monkey brain membranes. J Pharmacol Exp Ther 271:1630–1637PubMed
    39.Shen S, Ingenito AJ (1999) Comparison of cardiovascular responses to intra-hippocampal mu, delta and kappa opioid agonists in spontaneously hypertensive rats and isolation-induced hypertensive rats. J Hypertens 17:497–505CrossRef PubMed
    40.Shen S, Ingenito AJ (2000) Chronic blockade of hippocampal kappa receptors increases arterial pressure in conscious spontaneously hypertensive rats but not in normotensive Wistar Kyoto rats. Clin Exp Hypertens 22:507–519CrossRef PubMed
    41.Pan ZZ (1998) Mu-opposing actions of the kappa-opioid receptor. Trends Pharmacol Sci 19:94–98CrossRef PubMed
    42.Bunzow JR, Saez C, Mortrud M, Bouvier C, Williams JT, Low M, Grandy DK (1994) Molecular cloning and tissue distribution of a putative member of the rat opioid receptor gene family that is not a mu, delta or kappa opioid receptor type. FEBS Lett 347:284–288CrossRef PubMed
    43.Calo’ G, Bigoni R, Rizzi A, Guerrini R, Salvadori S, Regoli D (2000) Nociceptin/orphanin FQ receptor ligands. Peptides 21:935–947CrossRef PubMed
    44.Kapusta DR, Chang JK, Kenigs VA (1999) Central administration of [Phe1Ψ(CH2-NH)Gly2]nociceptin(1-13)-NH2 and orphanin FQ/nociceptin (OFQ/N) produce similar cardiovascular and renal responses in conscious rats. J Pharmacol Exp Ther 289:173–180PubMed
    45.Mao L, Wang JQ (2000) Microinjection of nociceptin (Orphanin FQ) into nucleus tractus solitarii elevates blood pressure and heart rate in both anesthetized and conscious rats. J Pharmacol Exp Ther 294:255–262PubMed
    46.Yamada H, Nakamoto H, Suzuki Y, Ito T, Aisaka K (2002) Pharmacological profiles of a novel opioid receptor-like1 (ORL1) receptor antagonist, JTC-801. Br J Pharmacol 135:323–332PubMedCentral CrossRef PubMed
    47.Lambert DG (2008) The nociceptin/orphanin FQ receptor: a target with broad therapeutic potential. Nat Rev Drug Discov 7:694–710CrossRef PubMed
    48.Ozaki S, Kawamoto H, Itoh Y, Miyaji M, Azuma T, Ichikawa D, Nambu H, Iguchi T, Iwasawa Y, Ohta H (2000) In vitro and in vivo pharmacological characterization of J-113397, a potent and selective non-peptidyl ORL1 receptor antagonist. Eur J Pharmacol 402:45–53CrossRef PubMed
    49.Tekes K, Hantos M, Bizderi B, Gyenge M, Kecskeméti V, Huszti Z (2005) Stimulating effect of nociceptin on histamine release in the rat brain? Inflamm Res 54(Suppl 1):S38–S39CrossRef PubMed
    50.Shimizu T, Okada S, Yamaguchi N, Sasaki T, Lu L, Yokotani K (2006) Centrally administered histamine evokes the adrenal secretion of noradrenaline and adrenaline by brain cyclooxygenase-1- and thromboxane A2-mediated mechanisms in rats. Eur J Pharmacol 541:152–157CrossRef PubMed
    51.Okuma Y, Yokotani K, Murakami Y, Osumi Y (1997) Brain histamine mediates the bombesin-induced central activation of sympatho-adrenomedullary outflow. Life Sci 61:2521–2528CrossRef PubMed
    52.Kent P, Anisman H, Merali Z (1998) Are bombesin-like peptides involved in the mediation of stress response? Life Sci 62:103–114CrossRef PubMed
    53.Merali Z, McIntosh J, Kent P, Michaud D, Anisman H (1998) Aversive and appetitive events evoke the release of corticotropin-releasing hormone and bombesin-like peptides at the central nucleus of the amygdala. J Neurosci 18:4758–4766PubMed
    54.Merali Z, Anisman H, James JS, Kent P, Schulkin J (2008) Effects of corticosterone on corticotrophin-releasing hormone and gastrin-releasing peptide release in response to an aversive stimulus in two regions of the forebrain (central nucleus of the amygdala and prefrontal cortex). Eur J Neurosci 28:165–172CrossRef PubMed
    55.Bédard T, Mountney C, Kent P, Anisman H, Merali Z (2007) Role of gastrin-releasing peptide and neuromedin B in anxiety and fear-related behavior. Behav Brain Res 179:133–140CrossRef PubMed
    56.Merali Z, Bédard T, Andrews N, Davis B, McKnight AT, Gonzalez MI, Pritchard M, Kent P, Anisman H (2006) Bombesin receptors as a novel anti-anxiety therapeutic target: BB1 receptor actions on anxiety through alterations of serotonin activity. J Neurosci 26:10387–10396CrossRef PubMed
    57.Shimizu T, Okada S, Yamaguchi N, Arai J, Wakiguchi H, Yokotani K (2005) Brain phospholipase C/diacylglycerol lipase are involved in bombesin BB2 receptor-mediated activation of sympatho-adrenomedullary outflow in rats. Eur J Pharmacol 514:151–158CrossRef PubMed
    58.Andoh T, Kuwazono T, Lee JB, Kuraishi Y (2011) Gastrin-releasing peptide induces itch-related responses through mast cell degranulation in mice. Peptides 32:2098–2103CrossRef PubMed
  • 作者单位:Toshio Yawata (1)
    Youichirou Higashi (2)
    Takahiro Shimizu (2)
    Shogo Shimizu (2)
    Kumiko Nakamura (2)
    Keisuke Taniuchi (3)
    Tetsuya Ueba (1)
    Motoaki Saito (2)

    1. Department of Neurosurgery, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
    2. Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
    3. Department of Gastroenterology and Hepatology, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Biochemistry
    Medical Biochemistry
    Oncology
    Cardiology
  • 出版者:Springer Netherlands
  • ISSN:1573-4919
文摘
Previously, we reported that central administration of bombesin, a stress-related peptide, elevated plasma levels of catecholamines (noradrenaline and adrenaline) in the rat. The sympatho-adrenomedullary system, which is an important component of stress responses, can be regulated by the central opioid system. In the present study, therefore, we examined the roles of brain opioid receptor subtypes (µ, δ, and κ) and nociceptin receptors, originally identified as opioid-like orphan receptors, in the bombesin-induced activation of central sympatho-adrenomedullary outflow using anesthetized male Wistar rats. Intracerebroventricularly (i.c.v.) administered bombesin-(1 nmol/animal) induced elevation of plasma catecholamines was significantly potentiated by pretreatment with naloxone (300 and 1000 µg/animal, i.c.v.), a non-selective antagonist for µ-, δ-, and κ-opioid receptors. Pretreatment with cyprodime (100 µg/animal, i.c.v.), a selective antagonist for µ-opioid receptors, also potentiated the bombesin-induced responses. In contrast, pretreatment with naltrindole (100 µg/animal, i.c.v.) or nor-binaltorphimine (100 µg/animal, i.c.v.), a selective antagonist for δ- or κ-opioid receptors, significantly reduced the elevation of bombesin-induced catecholamines. In addition, pretreatment with JTC-801 (30 and 100 µg/animal, i.c.v.) or J-113397 (100 µg/animal, i.c.v.), which are selective antagonists for nociceptin receptors, also reduced the bombesin-induced responses. These results suggest that brain µ-opioid receptors play a suppressive role and that brain δ-, κ-opioid, and nociceptin receptors play a facilitative role in the bombesin-induced elevation of plasma catecholamines in the rat. Thus, in the brain, these receptors could play differential roles in regulating the activation of central sympatho-adrenomedullary outflow. Keywords Opioid receptor Nociceptin receptor Bombesin Brain Sympatho-adrenomedullary system

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700