trans isomerization, in terms of the nonclassicality and quantum entanglement which are shown to be controlled by the torsion angle as a molecular parameter. In this context we have provided a quantitative measure of entanglement in terms of Wigner function matrix and compared with other standard measures, namely, von Neumann entropy and partial transpose of joint density matrix. It is shown that the entanglement in the ground state maximizes as the angle reaches the conical intersection point. The highly nonclassical nature of the conical intersection is shown in terms of the significant amount of squeezing for long ranges of the torsion angle and vibronic coupling. The region of high entanglement at and around the conical intersection is connected to the spectroscopically ‘dark-time window recently detected in ultrafast transient optical spectroscopy experiments in molecular systems with torsional motion which is associated with the presence of conical intersection." />
Characterization of conical intersection in a cis-strong class="a-plus-plus">trans isomerization through nonclassicality and entanglement
详细信息    查看全文
  • 作者:Kinshuk Banerjee ; Gautam Gangopadhyay
  • 关键词:Conical intersection ; Entanglement ; Nonclassicality ; Cis–trans isomerization
  • 刊名:Journal of Mathematical Chemistry
  • 出版年:2015
  • 出版时间:September 2015
  • 年:2015
  • 卷:53
  • 期:8
  • 页码:1733-1749
  • 全文大小:1,873 KB
  • 参考文献:1.T.J. Dunn, I.A. Walmsley, S. Mukamel, Phys. Rev. Lett. 74, 884 (1995)View Article
    2.U. Leonhardt, Phys. Rev. A 55, 3164 (1997)View Article
    3.K.E. Cahill, R.J. Glauber, Phys. Rev. 177, 1882 (1969)View Article
    4.S.M. Barnett, P.M. Radmore, Methods in Theoretical Quantum Optics (Clarendon Press, Oxford, 1997)
    5.W.P. Schleich, Quantum Optics in Phase Space (Wiley, Berlin, 2001), and references therein
    6.A. Kenfack, K. Zyczkowski, J. Opt. B Quantum Semiclassical Opt. 6, 396 (2004)View Article
    7.J.P. Dahl, H. Mack, A. Wolf, W.P. Schleich, Phys. Rev. A 74, 042323 (2006)View Article
    8.D.T. Smithey, M. Beck, M.G. Raymer, A. Faridani, Phys. Rev. Lett. 70, 1244 (1993)View Article
    9.A.I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, S. Schiller, Phys. Rev. Lett. 87, 050402 (2001)View Article
    10.A. Zavatta, S. Viciani, M. Bellini, Science 306, 660 (2004)View Article
    11.A. Zavatta, V. Parigi, M. Bellini, Phys. Rev. A 75, 052106 (2007)View Article
    12.A. Ourjoumtsev, R. Tualle-Brouri, P. Grangier, Phys. Rev. Lett. 96, 213601 (2006)View Article
    13.A. Ourjoumtsev, A. Dantan, R. Tualle-Brouri, P. Grangier, Phys. Rev. Lett. 98, 030502 (2007)View Article
    14.J. Janszky, A.V. Vinogradov, T. Kobayashi, Z. Kis, Phys. Rev. A 50, 1777 (1994)View Article
    15.C. Kurtsiefer, T. Pfau, J. Mlynek, Nature 386, 150 (1997)View Article
    16.H. Katsuki, H. Chiba, B. Girard, C. Meier, K. Ohmori, Science 311, 1589 (2006)View Article
    17.S. Ghosh, U. Roy, C. Genes, D. Vitali, Phys. Rev. A 79, 052104 (2009)View Article
    18.I.A. Walmsley, L. Waxer, J. Phys. B 31, 1825 (1998)View Article
    19.C. Monroe, D.M. Meekhof, B.E. King, D.J. Wineland, Science 272, 1131 (1996)View Article
    20.L.G. Lutterbach, L. Davidovich, Phys. Rev. Lett. 78, 2547 (1997)View Article
    21.S. Wallentowitz, Filho R.L. de Matos, W. Vogel, Phys. Rev. A 56, 1205 (1997)View Article
    22.S. Wallentowitz, Filho R.L. de Matos, S.C. Gou, W. Vogel, Eur. Phys. J. D 6, 397 (1999)View Article
    23.A.D. O’Connell, et al. Nature 464, 697 (2010)
    24.K. Banerjee, G. Gangopadhyay, J. Phys. B At. Mol. Opt. Phys. 45, 045102 (2012)View Article
    25.K. Banerjee, G. Gangopadhyay, J. Math. Chem. 51, 2731 (2013)View Article
    26.G. Herzberg, H.C. Longuet-Higgins, Discuss. Faraday. Soc. 35, 77 (1963)View Article
    27.H. K?ppel, W. Domcke, L.S. Cederbaum, Adv. Chem. Phys. 57, 59 (1984)
    28.D.R. Yarkony, Rev. Mod. Phys. 68, 985 (1996)View Article
    29.U. Manthe, H. K?ppel, J. Chem. Phys. 93, 345 (1990)View Article
    30.U. Manthe, H. K?ppel, J. Chem. Phys. 93, 1658 (1990)View Article
    31.L. Seidner, W. Domcke, Chem. Phys. 186, 27 (1994)View Article
    32.W. Domcke, G. Stock, in Advances in Chemical Physics, vol. 100 pp. 1-69 (1997)
    33.M. Baer, G.D. Billing (eds.) The role of degenerate states in chemistry. In Advances in Chemical Physics, vol. 124 (Hoboken, NJ, Wiley, 2002)
    34.W. Domcke, D.R. Yarkony, H. K?ppel (eds.), Conical Intersections: Electronic Structure, Dynamics and Spectroscopy (World Sci, Singapore, 2004)
    35.B.G. Levine, T.J. Martinez, Annu. Rev. Phys. Chem. 58, 613 (2007)View Article
    36.S. Parker, S. Bose, M.B. Plenio, Phys. Rev. A 61, 032305 (2000)View Article
    37.S. Stenholm, K. Suominen, Quantum Approach to Informatics (Wiley, New York, 2005)View Article
    38.M. Horodecki, P. Horodecki, R. Horodecki, Phys. Lett. A 223, 1 (1996)View Article
    39.A. Peres, Phys. Rev. Lett. 77, 1413 (1996)View Article
    40.J. Liu, Z. Jiang, B. Shao, Phys. Rev. B 79, 115323 (2009)View Article
    41.C.A. Vera, M.N. Quesada, H. Vinck-Posada, B.A. Rodriguez, J. Phys. Condens. Matter. 21, 395603 (2009)View Article
    42.E. Schr?dinger, Naturwissenschaften 23, 807 (1935)View Article
    43.C. Gerry, P.L. Knight, Am. J. Phys. 65, 964 (1997)View Article
    44.P.L. Knight, in Quantum Fluctuations, Les Houches Session LXIII, eds. S. Reynaud, E. Giacobino, J. Zinn-Justin (Elsevier, 1997) p. 41
    45.M.V. Fedorov, M.A. Efremov, A.E. Kazakov, K.W. Chan, C.K. Law, J.H. Eberly, Phys. Rev. A 72, 032110 (2005)View Article
    46.D. Polli, P. Altoe, O. Weingart, K. Spillane, C. Manzoni, D. Brida, G. Tomasello, G. Orlandi, P. Kukura, R.A. Mathies, M. Garavelli, G. Cerullo, Nature 467, 440 (2010)View Article
    47.J. Briand, O. Bram, J. Rehault, J. Leonard, A. Cannizzo, M. Chergui, V. Zanirato, M. Olivucci, J. Helbingc, S. Haacke, Phys. Chem. Chem. Phys. 12, 3178 (2010)View Article
  • 作者单位:Kinshuk Banerjee (1)
    Gautam Gangopadhyay (2)

    1. Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata, 700 009, India
    2. S.N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata, 700098, India
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Physical Chemistry
    Theoretical and Computational Chemistry
    Mathematical Applications in Chemistry
  • 出版者:Springer Netherlands
  • ISSN:1572-8897
文摘
In this paper we have characterized the conical intersection, an important topological feature of potential energy surfaces in a in cis-em class="EmphasisTypeItalic">trans isomerization, in terms of the nonclassicality and quantum entanglement which are shown to be controlled by the torsion angle as a molecular parameter. In this context we have provided a quantitative measure of entanglement in terms of Wigner function matrix and compared with other standard measures, namely, von Neumann entropy and partial transpose of joint density matrix. It is shown that the entanglement in the ground state maximizes as the angle reaches the conical intersection point. The highly nonclassical nature of the conical intersection is shown in terms of the significant amount of squeezing for long ranges of the torsion angle and vibronic coupling. The region of high entanglement at and around the conical intersection is connected to the spectroscopically ‘dark-time window recently detected in ultrafast transient optical spectroscopy experiments in molecular systems with torsional motion which is associated with the presence of conical intersection.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700