Quantifying nonclassicality of correlations based on the concept of nondisruptive local state identification
详细信息    查看全文
  • 作者:Azam Kheirollahi ; Seyed Javad Akhtarshenas…
  • 关键词:Quantum correlation ; Nondisruptive local state identification ; Schatten p ; norm ; Entanglement monotone
  • 刊名:Quantum Information Processing
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:15
  • 期:4
  • 页码:1585-1599
  • 全文大小:553 KB
  • 参考文献:1.Barnnett, S.: Quantum Information. Oxford University Press, New York (2009)
    2.Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)ADS CrossRef MATH
    3.Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A Math. Gen. 34, 6899–6905 (2001)ADS MathSciNet CrossRef MATH
    4.Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655–1707 (2012)ADS CrossRef
    5.Céleri, L.C., Maziero, J., Serra, R.M.: Theoretical and experimental aspects of quantum discord and related measures. Int. J. Quantum Inf. 9, 1837–1873 (2011)MathSciNet CrossRef MATH
    6.Luo, S., Fu, S.: Measurement-induced nonlocality. Phys. Rev. Lett. 106, 120401 (2011)ADS CrossRef MATH
    7.Dakic, B., Vedral, V., Brukner, C.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)ADS CrossRef MATH
    8.Akhtarshenas, S.J., Mohammadi, H., Karimi, S., Azmi, Z.: Computable measure of quantum correlation. Quantum Inf. Process. 14, 247–267 (2015)ADS MathSciNet CrossRef MATH
    9.Li, B., Fei, S.-M., Wang, Z.-X., Fan, H.: Assisted state discrimination without entanglement. Phys. Rev. A 85, 022328 (2012)ADS CrossRef
    10.Knill, E., Laflamme, R.: Power of one bit of quantum information. Phys. Rev. Lett. 81, 5672–5675 (1998)ADS CrossRef
    11.Datta, A., Shaji, A., Caves, C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100, 050502 (2008)ADS CrossRef
    12.Fanchini, F.F., Cornelio, M.F., de Oliveira, M.C., Caldeira, A.O.: Conservation law for distributed entanglement of formation and quantum discord. Phys. Rev. A 84, 012313 (2011)ADS CrossRef
    13.Fazio, R., Modi, K., Pascazio, S., Vedral, V., Yuasu, K.: Witnessing the quantumness of a single system: from anticommutators to interference and discord. Phys. Rev. A 87, 052132 (2013)ADS CrossRef
    14.Piani, M., Horodecki, P., Horodecki, R.: Nonlocal
    oadcasting theorem for multipartite quantum correlations. Phys. Rev. Lett. 100, 090502 (2008)ADS CrossRef
    15.Piani, M., Christandl, M., Mora, C.E., Horodecki, P.: Broadcast copies reveal the quantumness of correlations. Phys. Rev. Lett. 102, 250503 (2009)ADS CrossRef MATH
    16.Luo, S.: On quantum no
    oadcasting. Lett. Math. Phys. 92, 143–153 (2010)ADS MathSciNet CrossRef MATH
    17.Modi, K., Cable, H., Williamson, M., Vedral, V.: Quantum correlations in mixed-state metrology. Phys. Rev. X 1, 021022 (2011)
    18.Horodecki, M., Oppenheim, J., Winter, A.: Partial quantum information. Nature 436, 673–676 (2005)ADS CrossRef
    19.Cavalcanti, D., Aolita, L., Boixo, S., Modi, K., Piani, M., Winter, A.: Operational interpretations of quantum discord. Phys. Rev. A 83, 032324 (2011)ADS CrossRef MATH
    20.Madhok, V., Datta, A.: Interpreting quantum discord through quantum state merging. Phys. Rev. A 83, 032323 (2011)ADS CrossRef
    21.Zurek, W.H.: Quantum discord and Maxwell’s demons. Phys. Rev. A 67, 012320 (2003)ADS CrossRef
    22.Brodutch, A., Terno, D.R.: Quantum discord, local operations, and Maxwell’s demons. Phys. Rev. A 81, 062103 (2010)ADS MathSciNet CrossRef
    23.Lanyon, B.P., Barbieri, M., Almeida, M.P., White, A.G.: Experimental quantum computing without entanglement. Phys. Rev. Lett. 101, 200501 (2008)ADS CrossRef
    24.Xu, J.-S., Xu, X.-Y., Li, C.-F., Zhang, C.-J., Zou, X.-B., Guo, G.-C.: Experimental investigation of classical and quantum correlations under decoherence. Nat. Commun. 1, 1–6 (2010)
    25.Rahimi, R., SaiToh, A.: Single-experiment-detectable nonclassical correlation witness. Phys. Rev. A 82, 022314 (2010)ADS CrossRef
    26.Yu, S., Zhang, C., Chen, Q., Oh, C.H.: Witnessing the quantum discord of all the unknown states (2011). arXiv:​1102.​4710
    27.Auccaise, R., Maziero, J., Celeri, L.C., Soares-Pinto, D.O., deAzevedo, E.R., Bonagamba, T.J., Sarthour, R.S., Oliveira, I.S., Serra, R.M.: Experimental witnessing the quantumness of correlations. Phys. Rev. Lett. 107, 070501 (2011)ADS CrossRef
    28.Auccaise, R., Celeri, L.C., Soares-Pinto, D.O., deAzevedo, E.R., Maziero, J., Souza, A.M., Bonagamba, T.J., Sarthour, R.S., Oliveira, I.S., Serra, R.M.: Environment-induced sudden transition in quantum discord dynamics. Phys. Rev. Lett. 107, 140403 (2011)ADS CrossRef
    29.Dakic, B., Ole Lipp, Y., Ma, X., Ringbauer, M., Kropatschek, S., Barz, S., Paterek, T., Vedral, V., Zeilinger, A., Brukner, C., Walther, P.: Quantum discord as resource for remote state preparation. Nat. Phys. 8, 666–670 (2012)CrossRef
    30.Ferraro, A., Aolita, L., Cavalcanti, D., Cucchietti, F.M., Acin, A.: Almost all quantum states have nonclassical correlations. Phys. Rev. A 81, 052318 (2010)ADS CrossRef
    31.Chen, L., Chitambar, E., Modi, K., Vacanti, G.: Detecting multipartite classical states and their resemblances. Phys. Rev. A 83, 020101 (2011)ADS CrossRef
    32.Wu, Y.C., Guo, G.C.: Norm-based measurement of quantum correlation. Phys. Rev. A 83, 062301 (2011)ADS CrossRef
    33.Guo, Z., Cao, H., Chen, Z.: Distinguishing classical correlations from quantum correlations. J. Phys. A Math. Theor. 45, 145301 (2012)ADS MathSciNet CrossRef MATH
    34.Brodutch, A., Modi, K.: Criteria for measures of quantum correlations. Quantum Inf. Comput. 12, 721–742 (2012)MathSciNet MATH
    35.Schatten, R.: Norm Ideals of Completely Continuous Operators. Springer, Berlin (1970)CrossRef MATH
    36.Georgi, H.: Lie Algebras in Particle Physics. Advanced Book Program, Reading (1999)
    37.Bengtsson, I., Życzkowski, K.: Geometry of Quantum States. Cambridge University Press, New York (2006)CrossRef MATH
    38.Buchleitner, A., Viviescas, C., Tiersch, M.: Entanglement and Decoherence. Springer, Berlin (2009)CrossRef MATH
    39.Uhlmann, A.: Entropy and optimal decompositions of states relative to a maximal commutative subalgebra. Open Syst. Inf. Dyn. 5, 209–227 (1998)MathSciNet CrossRef MATH
    40.Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)ADS CrossRef
    41.Piani, M.: Problem with geometric discord. Phys. Rev. A 86, 034101 (2012)ADS CrossRef
    42.Paula, F.M., de Oliveira, T.R., Sarandy, M.S.: Geometric quantum discord through the Schatten 1-norm. Phys. Rev. A 87, 064101 (2013)ADS CrossRef
    43.Ciccarello, F., Tufarelli, T., Giovannetti, V.: Toward computability of trace distance discord. New J. Phys. 16, 013038 (2014)ADS CrossRef
    44.Abad, T., Karimipour, V., Memarzadeh, L.: Power of quantum channels for creating quantum correlations. Phys. Rev. A 86, 062316 (2012)ADS CrossRef
  • 作者单位:Azam Kheirollahi (1)
    Seyed Javad Akhtarshenas (2)
    Hamidreza Mohammadi (1) (3)

    1. Department of Physics, University of Isfahan, Isfahan, Iran
    2. Department of Physics, Ferdowsi University of Mashhad, Mashhad, Iran
    3. Quantum Optics Group, University of Isfahan, Isfahan, Iran
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Physics
    Mathematics
    Engineering, general
    Computer Science, general
    Characterization and Evaluation Materials
  • 出版者:Springer Netherlands
  • ISSN:1573-1332
文摘
A bipartite state is classical with respect to party A if and only if party A can perform nondisruptive local state identification (NDLID) by a projective measurement. Motivated by this we introduce a class of quantum correlation measures for an arbitrary bipartite state. The measures utilize the general Schatten p-norm to quantify the amount of departure from the necessary and sufficient condition of classicality of correlations provided by the concept of NDLID. We show that for the case of Hilbert–Schmidt norm, i.e., \(p=2\), a closed formula is available for an arbitrary bipartite state. The reliability of the proposed measures is checked from the information-theoretic perspective. Also, the monotonicity behavior of these measures under LOCC is exemplified. The results reveal that for the general pure bipartite states these measures have an upper bound which is an entanglement monotone in its own right. This enables us to introduce a new measure of entanglement, for a general bipartite state, by convex roof construction. Some examples and comparison with other quantum correlation measures are also provided.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700