P1-Nonconforming shell element and its application to topology optimization
详细信息    查看全文
  • 作者:Chen Lei (1)
    Tae Hyun Baek (2)
    Gang-Won Jang (3)
  • 关键词:P1 ; nonconforming element ; Shear locking ; Degenerated shell element ; Incompressible material ; Topology optimization
  • 刊名:Journal of Mechanical Science and Technology
  • 出版年:2015
  • 出版时间:January 2015
  • 年:2015
  • 卷:29
  • 期:1
  • 页码:297-308
  • 全文大小:1,641 KB
  • 参考文献:1. O. C. Zienkiewicz, R. L. Taylor and J. M. Too, Reduced integration technique in general analysis of plates and shells, / Int. J. Numer. Meths. Engrg., 3 (1971) 275鈥?90. CrossRef
    2. T. J. R. Hughes and T. E. Tezduyar, Finite elements based upon Mindlin plate theory with particular reference to the four-node bilinear isoparametric element, / J. Appl. Mech., 48 (1981) 587鈥?96. CrossRef
    3. G. Prathap and G. R. Bhashyam, Reduced integration and the shear flexible beam element, / Int. J. Numer. Meths. Engrg., 18 (1982) 195鈥?10. CrossRef
    4. K. J. Bathe, / Finite Element Procedures, Prentice Hall, New Jersey, USA (1996).
    5. C. K. Choi and S. W. Yoo, Geometrically nonlinear behavior of an improved degenerated shell element, / Computers & Structures, 40 (3) (1991) 785鈥?94. CrossRef
    6. J. T. Oden and J. N. Reddy, Some observations on properties of certain mixed finite element approximations, / Int. J. Numer. Meths. Engrg., 9 (1975) 933鈥?38. CrossRef
    7. D. S. Malkus and T. J. R. Hughes, Mixed finite element methods-reduced and selective integration techniques: A unification of concepts, / Comput. Meths. Appl. Mech. Engrg., 15 (1) (1978) 63鈥?1. CrossRef
    8. E. N. Dvorkin and K. J. Bathe, A continuum mechanics based four-node shell element for general nonlinear analysis, / Eng. Comput., 1 (1984) 77鈥?8. CrossRef
    9. C. O. Lee, J. Lee and D. Sheen, A locking-free nonconforming finite element method for planar linear elasticity, / Advances in Comput. Math., 19 (2003) 277鈥?91. CrossRef
    10. S. Brenner and L. Sung, Linear finite element methods for planar elasticity, / Math. of Computation, 59 (1992) 321鈥?38. CrossRef
    11. M. Crouzeix and P. A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations, / RAIRO Numer. Anal., 7 (1973) 33鈥?6.
    12. R. Rannacher and S. Turek, Simple nonconforming quadrilateral Stokes element, / Numerical Methods for Partial Differential Equations, 8 (1972) 97鈥?11. CrossRef
    13. Jr. J. Douglas, J. E. Santos, D. Sheen and X. Ye, Nonconforming Galerkin methods based on quadrilateral elements for second order elliptic problems, / RAIRO Mathematical Modeling and Numerical Analysis, 33 (4) (1999) 747鈥?70. CrossRef
    14. Z. Cai, Jr. J. Douglas, J. E. Santos, D. Sheen and X. Ye, Nonconforming quadrilateral finite element: A correction, / CALCOLO, 37 (2000) 253鈥?54. CrossRef
    15. G. W. Jang and Y. Y. Kim, Topology optimization with displacement-based nonconforming finite elements for incompressible materials, / J. of Mechanical Science and Technology, 23 (2009) 442鈥?51. CrossRef
    16. G. W. Jang, H. Panganiban and T. J. Chung, P1-nonconforming quadrilateral finite element for topology optimization, / Int. J. Numer. Meth. Engrg., 84 (2010) 685鈥?07. CrossRef
    17. Y. Jeon, H. Nam and D. Sheen, A nonconforming quadrilateral element with maximal inf-sup constant, / Numerical Methods for Partial Differential Equations, 30 (1) (2014) 120鈥?32. CrossRef
    18. Z. Meng, D. Sheen, Z. Luo and S. Kim, Three-dimensional quadratic nonconforming brick element, / Numerical Methods for Partial Differential Equations, 30 (1) (2014) 158鈥?74. CrossRef
    19. C. Park and D. Sheen, P1-nonconforming quadrilateral finite element methods for second-order elliptic problems, / Siam J. Numer. Anal., 41 (2) (2003) 624鈥?40. CrossRef
    20. G. Prathap, / Finite element analysis as computation, CSIR center for mathematical modeling and computer simulation, Bangalore, India (2001), available on-line in pdf version at http://www.cmmacs.ernet.in/cmmacs/online_contents.html.
    21. T. J. R. Hughes, / The finite element method: Linear static and dynamic finite element analysis, Dover Publications, New York, USA (2000).
    22. M. P. Bends酶e and O. Sigmund, Material interpolation schemes in topology optimization, / Archive of Applied Mechanics, 69 (1999) 635鈥?54. CrossRef
    23. G. H. Yoon, M. Langelaar and F. van Keulen, Topology optimization for layered shell structures using the element connectivity parameterization, / International Conference on Engineering Optimization, Rio de Janeiro, Brazil (2008).
    24. G. W. Jang, J. H. Jeong, Y. Y. Kim, D. Sheen, C. Park and M. N. Kim, Checkerboard-free topology optimization using non-conforming finite elements, / International J. for Numerical Methods in Engineering, 57 (2003) 1717鈥?735. CrossRef
    25. T. S. Kim and Y. Y. Kim, Mac-based mode-tracking in structural topology optimization, / Computers & Structures, 74 (3) (2000) 375鈥?83. CrossRef
    26. K. Svanberg, The method of moving asymptotes: a new model for structural optimization, / Int. J. Numer. Meth. Engrg., 24 (1987) 359鈥?73. CrossRef
  • 作者单位:Chen Lei (1)
    Tae Hyun Baek (2)
    Gang-Won Jang (3)

    1. Department of Mechanical Engineering, Xiangfan University, Xiangfan, Hubei, 441053, China
    2. School of Mechanical and Automotive Engineering, Kunsan National University, Gunsan, 573-701, Korea
    3. Faculty of Mechanical and Aerospace Engineering, Sejong University, 98 Gunja-Dong, Gwangjin-Gu, Seoul, 143-747, Korea
  • 刊物类别:Engineering
  • 刊物主题:Mechanical Engineering
    Structural Mechanics
    Control Engineering
    Industrial and Production Engineering
  • 出版者:The Korean Society of Mechanical Engineers
  • ISSN:1976-3824
文摘
The P1-nonconforming quadrilateral element developed by Park and Sheen [19] is employed for the formulation of a four-node degenerated shell element. The numerical stability of the P1-nonconforming quadrilateral element verified in plane elasticity problems and Stokes flow problems is investigated for the application of mitigating locking phenomena in shell problems. To facilitate the stiffness matrix computation for a non-flat general quadrilateral shell element, a nonparametric reference scheme using both affine transformation and bilinear transformation is adopted. Based on a field-consistency concept, the spurious constraints that cause locking are analyzed and an effective reduced integration scheme is found. The proposed shell element is applied to multi-physics topology optimization problems involving fluid analysis and shell analysis. For fluid analysis, the P1-nonconforming quadrilateral element is also adopted to utilize its volumetric locking-free property for incompressible materials. Vein layouts of leaves are designed by topology optimization and compared with natural vein layouts to verify the effectiveness of the proposed element.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700