Noninvasive Method for Simultaneously Measuring the Thermophysical Properties and Blood Perfusion in Cylindrically Shaped Living Tissues
详细信息    查看全文
  • 作者:Kai Yue (1)
    Xinxin Zhang (1)
    Yi Y. Zuo (2) (3)
  • 关键词:Bioheat transfer ; Blood perfusion ; Heat capacity ; Noninvasive measurement ; Parameter estimation ; Thermal conductivity
  • 刊名:Cell Biochemistry and Biophysics
  • 出版年:2008
  • 出版时间:January 2008
  • 年:2008
  • 卷:50
  • 期:1
  • 页码:41-51
  • 全文大小:388KB
  • 参考文献:1. Diller, K. R., & Ryan, T. P. (1998). Heat transfer in living system: Current opportunities. / Transactions of the ASME, 120, 810鈥?29.
    2. Chato, J. C. (1980). Heat transfer to blood vessels. / Journal of Biomechanical Engineering, 102, 110鈥?18.
    3. Francesco, M. (1992). Microstrip-antenna design for hyperthermia treatment of superficial tumors. / IEEE Transactions on Biomedical Engineering, 39, 580鈥?88. CrossRef
    4. Liu, J., & Wang, C. C. (1997). / Bioheat transfer. Beijing: Science Press, pp 45鈥?0.
    5. Bai, X., & Pegg, D. E. (1991). Thermal property measurement on biological materials at subzero temperatures. / Journal of Biomechanical Engineering, 113, 423鈥?29.
    6. Chato, J. C. (1968). A method for measurement of the thermal properties of biological material. In J. C. Chato (Ed.), / Thermal problems in biotechnique (pp 16鈥?5). New York: ASME Symp. Ser.
    7. Bowman, H. F., Cravalho, E. G., & Woods, M. (1975). Theory, measurement, and application of thermal properties of biomaterials. / Annual Review of Biophysics and Bioengineering, 4, 43鈥?4. CrossRef
    8. Arkin, H., Holmes, K. R., & Chen, M. M. (1989). A technique for measuring the thermal conductivity and evaluating the 鈥渁pparent conductivity鈥?concept in biomaterials. / Journal of Biomechanical Engineering, 111, 276鈥?82.
    9. Martin, G. T., & Bowman, H. F. (2000). Validation of real-time continuous perfusion measurement. / Medical & Biological Engineering & Computing, 38, 319鈥?25. CrossRef
    10. Maitz, P. K., Khot, M. B., Mayer, H. F., Martin, G. T., Pribaz, J. J., Bowman, H. F., & Orgill, D. P. (2004). Continuous and real-time blood perfusion monitoring in prefabricated flaps. / Journal of Reconstructive Microsurgery, 20(1), 35鈥?1. CrossRef
    11. Wei, D. (1990). Optimal design of a thermal probe for surface measurement of cerebral blood flow. / IEEE Transactions on Biomedical Engineering, 137, 1159鈥?172. CrossRef
    12. Patel, P. A., Valvano, J. W., & Pearce, J. A. (1987). A self-heated thermistor technique to measure effective thermal properties from the tissue surface. / Journal of Biomechanical Engineering, 109, 330鈥?35. CrossRef
    13. Naresh, C., Cao, H., Yuan, D. Y., & Valvano, J. W. (2001). Measurement of directional thermal properties of biomaterials. / IEEE Transactions on Biomedical Engineering, 48, 261鈥?67. CrossRef
    14. Scott, E. P., Robinson, P. S., & Diller, T. E. (1998). Development of methodologies for the estimation of blood perfusion using a minimally invasive thermal probe. / Measurement Science and Technology, 9, 889鈥?97. CrossRef
    15. O鈥橰eilly, T. B., Gonzales, T. L., & Diller, T. E. (1996). Development of a noninvasive blood perfusion probe. In L. J. Hayes & S. Clegg (Eds.), / Advances in heat and mass transfer in biotechnology (pp 67鈥?3). N.Y.: ASME.
    16. Deng, Z. S., & Liu, J. (2002). Parametric studies on the phase shift method to measure the blood perfusion of biological bodies. / Medical Engineering & Physics, 22, 693鈥?02. CrossRef
    17. Valvano, J. W., Allen, J. T., & Bowman, H. F. (1984). The simultaneous measurement of thermal conductivity, thermal diffusivity and perfusion in small volumes of tissue. / Journal of Biomechanical Engineering, 106, 193鈥?97.
    18. Cheng, H. L. M., & Plewes, D. B. (2002). Thermal conductivity by magnetic resonance thermometry and focused ultrasound heating. / Journal of Magnetic Resonance Imaging, 16( / 5), 598鈥?09. CrossRef
    19. Samset, E., Mala, T., Edwnd, B., Gladhaug, I., Soreide, O., & Fosse, E. (2001). Validation of estimated 3D temperature maps during hepatic cryo surgery. / Magnetic Resonance Imaging, 19, 715鈥?21. CrossRef
    20. Wissler, E. H. (1998). Pennes鈥?1948 paper revisited. / Journal of Applied Physiology, 55, 35鈥?1.
    21. Pennes, H. H. (1948). Analysis of tissue and arterial temperatures in the resting human forearm. / Journal of Applied Physiology, 1, 93鈥?22.
    22. Diller, K. R., Valvano, J. W., Pearce, J. A. (1999). Bioheat transfer. In F. Kreith (Ed.), / The CRC handbook of thermal engineering 2000 (pp. 4.114鈥?.176). Boca Raton: CRC Press.
    23. Stolwijk, J. A. J. (1971). A mathematical model of physiological temperature regulation in man, / NASA Contractor Reports, CR1鈥?855.
    24. Wolpert, D. H., & Marcready, W. G. (1997). No free lunch theorems for optimization. / IEEE Transactions On Evolutionary Computation, 1, 67鈥?2. CrossRef
    25. Beyer, H. G., & Deb, K. (2001). On self-adaptive features in real-parameter evolutionary algorithms. / IEEE Transactions on Evolutionary Computation, 5, 250鈥?70. CrossRef
    26. Deb, K., & Goldberg, D. E. (1989). An investigation of niche and species formation in genetic function optimization. / Proceedings Third ICGA, San Mateo, CA: Morgan Kaufmann Publishers, 42鈥?0.
    27. Goldberg, D. E., & Tsutsui, S. (2001). Search space boundary extension method in real-coded genetic algorithms. / Information Sciences, 133, 229鈥?47. CrossRef
    28. Huang, R., Fogarty, T. C. (1991). Adaptive classification and control-rule optimization via a learning algorithm for controlling a dynamic system. / Proceedings of 30th Conference Decision and Control, Brighton, England, 867鈥?68.
    29. Parrott, J. E., & Stuckes, A. D. (1975). / Thermal conductivity of solids. London: Pion Ltd, 120鈥?22.
    30. Yue, K., Zhang, X. X., & Yu, F. (2004). Theoretical analysis on noninvasive measurement of thermal parameters of living tissues using three-point method. / Journal of University of Science and Technology Beijing, 26, 330鈥?32.
    31. Arkin, H., & Shitzer, A. (1984). A model of thermoregulation in the human body. / American Society of Mechanical Engineers. Winter Annual Meeting, New Orleans, LA, Part 1 and Part 2.
  • 作者单位:Kai Yue (1)
    Xinxin Zhang (1)
    Yi Y. Zuo (2) (3)

    1. Department of Thermal Engineering, University of Science and Technology Beijing, Beijing, 100083, China
    2. Department of Biochemistry, University of Western Ontario, London, ON, Canada, N6A 5A5
    3. Department of Chemistry, University of Western Ontario, London, ON, Canada, N6A 5B7
文摘
An easy-to-use noninvasive method was developed to simultaneously measure the thermophysical parameters and blood perfusion in cylindrically shaped living tissues. This method is based on a two-dimensional mathematical model which requires temperature measurements at only three separate points along the axial direction on the cylinder surface. A sensitivity analysis has shown that the key thermophysical parameters, such as the thermal conductivity, volumetric heat capacity, and blood perfusion can be estimated simultaneously with high accuracy. Genetic algorithm (GA) selection, crossover, and mutation operators were developed to solve this multi-parameter optimization problem. This three-point method was validated by measuring the properties of a dynamic tissue-equivalent phantom with known thermal parameters. The method has also been applied to measure the thermophysical parameters and blood perfusion in human forearms with measured results agreeing well with the literature values.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700