Interaction of optical and interface phonons and their anisotropy in GaAs/AlAs superlattices: Experiment and calculations
详细信息    查看全文
  • 作者:V. A. Volodin ; V. A. Sachkov ; M. P. Sinyukov
  • 刊名:Journal of Experimental and Theoretical Physics
  • 出版年:2015
  • 出版时间:May 2015
  • 年:2015
  • 卷:120
  • 期:5
  • 页码:781-789
  • 全文大小:492 KB
  • 参考文献:1.A. P. Silin, Sov. Phys.鈥擴sp. 28 (11), 972 (1985).ADS View Article
    2.M. A. Herman, Semiconductor Superlattices (Akademie-Verlag, Berlin, 1986; Mir, Moscow, 1989).
    3.Light Scattering in Solids V: Superlattices and Other Microstructures, Ed. by M. Cardona and G. Guntherodt (Springer-Verlag, Berlin, 1989).
    4.A. S. Barker, Jr., J. L. Merz, and A. C. Gossard, Phys. Rev. B: Solid State 17, 3181 (1978).ADS View Article
    5.G. A. Sai-Halasz, A. Pinczuk, P. Y. Yu, and L. Esaki, Solid State Commun. 25, 381 (1978).ADS View Article
    6.B. Jusserand, D. Paquet, J. Kervarec, and A. Regreny, J. Phys. 45, C5 (1984).
    7.C. Colvard, T. A. Gant, M. V. Klein, R. Merlin, R. Fischer, H. Morkoc, and A. C. Gossard, Phys. Rev. B: Condens. Matter 31, 2080 (1985).ADS View Article
    8.M. Cardona, Superlattices Microstruct. 5, 27 (1989).ADS View Article
    9.A. P. Shebanin, V. A. Gaisler, T. V. Kurochkina, N. T. Moshegov, S. I. Stenin, and A. I. Toropov, JETP Lett. 49 (6), 399 (1989).ADS
    10.V. A. Gaisler, Doctoral Dissertation in Mathematics and Physics Novosibirsk, 1996.
    11.N. N. Ledentsov, D. Litvinov, A. Rosenauer, D. Gerthsen, I. P. Soshnikov, V. A. Shchukin, V. M. Ustinov, A. Yu. Egorov, A. E. Zhukov, V. A. Volodin, M. D. Efremov, V. V. Preobrazhenskii, B. P. Semyagin, D. Bimberg, and Zh. I. Alferov, J. Electron. Mater. 30, 463 (2001).ADS View Article
    12.S. M. Rytov, Sov. Phys. JETP 2, 466 (1955).MATH
    13.S. M. Rytov, Akust. Zh. 2, 71 (1956).MathSciNet
    14.M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Clarendon, Oxford, 1954; Inostrannaya Literatura, Moscow, 1958).
    15.R. Tsu and S. S. Jha, Appl. Phys. Lett. 20, 16 (1972).ADS View Article
    16.Shang-Fen Ren, Hanyou Chu, and Yia-Chung Chang, Phys. Rev. B: Condens. Matter 37, 8899 (1988).ADS View Article
    17.M. P. Chamberlain, C. Trallero-Giner, and M. Cardona, Phys. Rev. B: Condens. Matter 50, 1611 (1994).ADS View Article
    18.R. Merlin, C. Colvard, M. V. Klein, H. Morkoc, A. Y. Cho, and A. C. Gossard, Appl. Phys. Lett. 36, 43 (1980).ADS View Article
    19.D. A. Tenne, V. A. Gaisler, N. T. Moshegov, A. I. Toropov, and A. P. Shebanin, JETP Lett. 68 (1), 53 (1998).ADS View Article
    20.V. A. Volodin and M. P. Sinyukov, JETP Lett. 99 (7), 396 (2014).ADS View Article
    21.V. A. Volodin, JETP Lett. 89 (8), 419 (2009).ADS View Article
    22.V. A. Volodin, Phys. Solid State 53 (2), 404 (2011).ADS View Article
    23.V. A. Volodin, A. S. Kozhukhov, A. V. Latyshev, and D. V. Shcheglov, JETP Lett. 95 (2), 70 (2012).ADS View Article
    24.V. A. Volodin, M. P. Sinyukov, V. A. Sachkov, M. Stoffel, H. Rinnert, and M. Vergnat, Europhys. Lett. 105, 16003 (2014).ADS View Article
    25.D. Strauch and B. Dorner, J. Phys.: Condens. Matter 2, 1457 (1990).ADS
    26.B. Jusserand and J. Sapriel, Phys. Rev. B: Condens. Matter 24, 7194 (1981).ADS View Article
    27.G. Kanellis, Phys. Rev. B: Condens. Matter 35, 746 (1987).ADS View Article
    28.L. Miglio and L. Colombo, Superlattices Microstruct. 7, 139 (1990).ADS View Article
    29.M. V. Vol鈥檏enshtein, Dokl. Akad. Nauk SSSR XXXII, 185 (1941).
    30.P. Castrillo, L. Colombo, and G. Armelles, Phys. Rev. B: Condens. Matter 49, 10362 (1994).ADS View Article
    31.V. A. Sachkov, Candidate鈥檚 Dissertation in Mathematics and Physics Omsk, 2011.
    32.D. Litvinov, A. Rosenauer, D. Gerthsen, N. N. Ledentsov, D. Bimberg, G. A. Ljubas, V. V. Bolotov, B. R. Semyagin, and I. P. Soshnikov, Appl. Phys. Lett. 81, 1080 (2002).ADS View Article
    33.D. J. Lockwood, Guolin Yu, and N. L. Rowel, Solid State Commun. 136, 404 (2005).ADS View Article
    34.V. A. Volodin, Avtometriya 50, 68 (2014).
    35.V. A. Volodin, M. D. Efremov, and V. A. Sachkov, J. Exp. Theor. Phys. 103 (4), 646 (2006).ADS View Article
    36.A. S. Barker, Jr., J. L. Merz, and A. C. Gossard, Phys. Rev. B: Solid State 17, 3181 (1978).ADS View Article
    37.M. D. Efremov, V. A. Volodin, V. A. Sachkov, V. V. Preobrazhenskii, B. R. Semyagin, V. V. Bolotov, E. A. Galaktionov, and A. V. Kretinin, JETP Lett. 70 (2), 75 (1999).ADS View Article
    38.A. Huber, T. Egeler, W. Ettmiiller, H. Rothfritz, G. Trankle, and G. Abstreiter, Superlattices and Microstructures 9, 309 (1991).ADS View Article
  • 作者单位:V. A. Volodin (1) (2)
    V. A. Sachkov (3)
    M. P. Sinyukov (1)

    1. Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russia
    2. Novosibirsk State University, Novosibirsk, 630090, Russia
    3. Omsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Omsk, 644040, Russia
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Elementary Particles and Nuclei
    Relativity and Cosmology
    Elementary Particles and Quantum Field Theory
    Solid State Physics and Spectroscopy
    Russian Library of Science
  • 出版者:MAIK Nauka/Interperiodica distributed exclusively by Springer Science+Business Media LLC.
  • ISSN:1090-6509
文摘
The angular anisotropy of interface phonons and their interaction with optical phonons in (001) GaAs/AlAs superlattices are calculated and experimentally studied. Experiments were performed by Raman light scattering in different scattering geometries for phonons with the wave vector directed normally to the superlattice and along its layers. Phonon frequencies were calculated by the extended Born method taking the Coulomb interaction into account in the rigid-ion approximation. Raman scattering spectra were calculated in the Volkenshtein bond-polarizability approximation. Calculations confirmed that the angular anisotropy of phonons observed in experiments appears due to interaction (mixing) of optical phonons, in which atoms are mainly displaced normally to superlattices, with interface phonons (TO-IF modes). In the scattering geometry, when the wave vector lies in the plane of superlattice layers, the mixed TO-IF modes are observed under nonresonance conditions. The Raman spectra for TO-IF modes depend on the mixing of atoms at heteroboundaries.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700