On peaks-over-threshold modeling of floods with zero-inflated Poisson arrivals under stationarity and nonstationarity
详细信息    查看全文
  • 作者:Artur Tiago Silva (1)
    Maria Manuela Portela (1)
    Mauro Naghettini (2)
  • 关键词:Flood frequency analysis ; Peaks ; over ; threshold ; Zero ; inflated Poisson ; Nonstationarity
  • 刊名:Stochastic Environmental Research and Risk Assessment (SERRA)
  • 出版年:2014
  • 出版时间:August 2014
  • 年:2014
  • 卷:28
  • 期:6
  • 页码:1587-1599
  • 全文大小:992 KB
  • 参考文献:1. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19(6):716-23 CrossRef
    2. Balkema AA, de Haan L (1974) Residual life time at great age. Ann Probab 2(5):792-04 CrossRef
    3. Beguería S (2005) Uncertainties in partial duration series modelling of extremes related to the choice of the threshold value. J Hydrol 303(1):215-30 CrossRef
    4. Ben-Zvi A (1991) Observed advantage for negative binomial over Poisson distribution in partial duration series. Stoch Hydrol Hydraul 5(2):135-46 CrossRef
    5. Bhunya PK, Singh RD, Berndtsson R, Panda SN (2012) Flood analysis using generalized logistic models in partial duration series. J Hydrol 420:59-1 CrossRef
    6. Casella G, Berger RL (1990) Statistical inference, vol 70. Duxbury Press, Belmont
    7. Claps P, Laio F (2003) Can continuous streamflow data support flood frequency analysis? An alternative to the partial duration series approach. Water Resour Res 39(8):1216 CrossRef
    8. Clarke RT (2007) Hydrological prediction in a non-stationary world. Hydrol Earth Syst Sci 11(1):408-14. doi:10.5194/hess-11-408-2007
    9. Coles S (2001) An introduction to statistical modeling of extreme values. Springer, London
    10. Coles S, Stephenson A (2006) Ismev: an introduction to statistical modeling of extreme values. Original S functions by Stuart Coles and R port and R documentation files by Alec Stephenson
    11. Cunnane C (1979) A note on the Poisson assumption in partial duration series models. Water Resour Res 15(2):489-94 CrossRef
    12. Davison AC (2003) Statistical models. Cambridge University Press, Cambridge
    13. Davison AC, Smith RL (1990) Models for exceedances over high thresholds. J Roy Stat Soc B Met 52(3):393-42
    14. Delgado JM, Apel H, Merz B (2010) Flood trends and variability in the Mekong river. Hydrol Earth Syst Sci 14(3):407-18 CrossRef
    15. Delgado JM, Merz B, Apel H (2012) A climate-flood link for the lower Mekong River. Hydrol Earth Syst Sci 16(5):1533-541 CrossRef
    16. Ekanayake ST, Cruise JF (1993) Comparisons of Weibull-and exponential-based partial duration stochastic flood models. Stoch Hydrol Hydraul 7(4):283-97 CrossRef
    17. Fisher RA, Tippett LHC (1928) Limiting forms of the frequency distribution of the largest or smallest member of a sample. In: Math Prof Cambridge, Cambridge Univ Press, vol 24, pp 180-90
    18. Galiatsatou P, Prinos P (2011) Modeling non-stationary extreme waves using a point process approach and wavelets. Stoch Environ Res Risk Assess 25(2):165-83 CrossRef
    19. Gnedenko B (1943) Sur la distribution limite du terme maximum d’une série aléatoire. Ann Math 44(3):423-53 CrossRef
    20. Grimm AM, Tedeschi RG (2009) ENSO and extreme rainfall events in South America. J Clim 22(7):1589-609 CrossRef
    21. Hundecha Y, St-Hilaire A, Ouarda TBMJ, El Adlouni S, Gachon P (2008) A nonstationary extreme value analysis for the assessment of changes in extreme annual wind speed over the Gulf of St. Lawrence, Canada. J Appl Meteorol Clim 47(11):2745-759 CrossRef
    22. Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (2003) An overview of the North Atlantic oscillation. In: Hurrell J, Kushnir Y, Ottersen G, Visbeck M (eds) The North Atlantic Oscillation: climatic significance and environmental impact. Geophysical Monograph, vol 134. AGU American Geophysical Union, pp 1-6
    23. Jones PD, Jonsson T, Wheeler D (1997) Extension to the North Atlantic Oscillation using early instrumental pressure observations from Gibraltar and south-west Iceland. Int J Climatol 17(13):1433-450 CrossRef
    24. Katz RW (2010) Statistics of extremes in climate change. Clim Change 100(1):71-6 CrossRef
    25. Katz RW (2013) Statistical methods for nonstationary extremes. In: Extremes in a changing vlimate. Springer, New York, pp 15-7
    26. Koutsoyiannis D (2011) Hurst–Kolmogorov dynamics and uncertainty. J Am Water Resour Assoc 47(3):481-95 CrossRef
    27. Kwon HH, Sivakumar B, Moon YI, Kim BS (2011) Assessment of change in design flood frequency under climate change using a multivariate downscaling model and a precipitation-runoff model. Stoch Environ Res Risk Assess 25(4):567-81 CrossRef
    28. Lambert D (1992) Zero-inflated Poisson regression, with an application to defects in manufacturing. Technometrics 34(1):1-4 CrossRef
    29. Lang M, Ouarda TBMJ, Bobée B (1999) Towards operational guidelines for over-threshold modeling. J Hydrol 225(3-):103-17 CrossRef
    30. Lee T, Ouarda TBMJ (2010) Long-term prediction of precipitation and hydrologic extremes with nonstationary oscillation processes. J Geophys Res Atmos 115:D13
    31. Lins HF, Cohn TA (2011) Stationarity: wanted dead or alive? J Am Water Resour Assoc 47(3):475-80 CrossRef
    32. López J, Francés F (2013) Non-stationary flood frequency analysis in continental Spanish rivers, using climate and reservoir indices as external covariates. Hydrol Earth Syst Sci Discuss 10:3103-142 CrossRef
    33. Madsen H, Rasmussen PF, Rosbjerg D (1997) Comparison of annual maximum series and partial duration series methods for modeling extreme hydrologic events: 1. At-site modeling. Water Resour Res 33(4):747-57 CrossRef
    34. Milly PCD, Betancourt J, Falkenmark M, Hirsch RM, Kundzewicz Z, Lettenmaier D, Stouffer R (2008) Stationarity is dead: whither water management? Science 319(5863):573 CrossRef
    35. Naghettini M, Pinto EJA (2007) Hidrologia estatística. CPRM, Belo Horizonte
    36. NERC (1975) Flood Studies Report, vol I. Natural Environment Research Council, London
    37. ?n?z B, Bayazit M (2001) Effect of the occurrence process of the peaks over threshold on the flood estimates. J Hydrol 244(1):86-6 CrossRef
    38. Osborn TJ, Briffa KR, Tett SFB, Jones PD, Trigo RM (1999) Evaluation of the North Atlantic Oscillation as simulated by a coupled climate model. Clim Dyn 15(9):685-02 CrossRef
    39. Pickands J (1975) Statistical inference using extreme order statistics. Ann Stat 3(1):119-31 CrossRef
    40. Pulido-Calvo I, Portela MM (2007) Application of neural approaches to one-step daily flow forecasting in Portuguese watersheds. J Hydrol 332(1-):1-5 CrossRef
    41. R Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN: 3-900051-07-0
    42. Renard B, Lang M, Bois P (2006) Statistical analysis of extreme events in a non-stationary context via a Bayesian framework: case study with peak-over-threshold data. Stoch Environ Res Risk Assess 21(2):97-12 CrossRef
    43. Rosbjerg D, Rasmussen F (1991) Modelling of exceedances in partial duration series. In: Proceeding of the international hydrology and water resources symposium, vol 3. National Conference Publication—Institute of Engineers, pp 755-60
    44. Rosbjerg D, Madsen H, Rasmussen PF (1992) Prediction in partial duration series with generalized Pareto-distributed exceedances. Water Resour Res 28(11):3001-010 CrossRef
    45. Salas JD, Obeysekera J (2013) Revisiting the concepts of return period and risk for nonstationary hydrologic extreme events. J Hydrol Eng
    46. Shane RM, Lynn WR (1964) Mathematical model for flood risk evaluation. J Hydraul Eng Div 90(HY 6):4119-122
    47. Siliverstovs B, ?tsch R, Kemfert C, Jaeger CC, Haas A, Kremers H (2010) Climate change and modelling of extreme temperatures in Switzerland. Stoch Environ Res Risk Assess 24(2):311-26 CrossRef
    48. Silva AT, Portela MM, Baez J, Naghettini M (2012a) Construction of confidence intervals for extreme rainfall quantiles. Risk Anal VIII:167-93
    49. Silva AT, Portela MM, Naghettini M (2012b) Nonstationarities in the occurrence rates of flood events in Portuguese watersheds. Hydrol Earth Syst Sci 16(5):241-54. doi:10.5194/hessd-8-8609-2011
    50. Singh SN (1963) A note on inflated Poisson distribution. J Indian Stat Assoc 1(3):140-44
    51. Tramblay Y, Neppel L, Carreau J, Najib K (2013) Non-stationary frequency analysis of heavy rainfall events in southern France. Hydrol Sci J 58(2):280-94 CrossRef
    52. Trigo RM, Zezere JL, Rodrigues ML, Trigo IF (2005) The influence of the North Atlantic Oscillation on rainfall triggering of landslides near Lisbon. Nat Hazards 36(3):331-54 CrossRef
    53. Villarini G, Smith JA, Serinaldi F, Bales J, Bates PD, Krajewski WF (2009) Flood frequency analysis for nonstationary annual peak records in an urban drainage basin. Adv Wat Resour 32(8):1255-266 CrossRef
    54. Villarini G, Smith JA, Serinaldi F, Ntelekos AA (2011) Analyses of seasonal and annual maximum daily discharge records for central Europe. J Hydrol 399(3):299-12 CrossRef
    55. Zeileis A, Kleiber C, Jackman S (2008) Regression models for count data in R. J Stat Softw 27(8):1-5
    56. Zelenhasic E (1970) Theoretical probability distributions for flood peaks. Hydrology paper 42. Colorado State University, Fort Collins
  • 作者单位:Artur Tiago Silva (1)
    Maria Manuela Portela (1)
    Mauro Naghettini (2)

    1. CEHIDRO, Instituto Superior Técnico, Lisbon, Portugal
    2. Federal University of Minas Gerais, Belo Horizonte, Brazil
  • ISSN:1436-3259
文摘
The peaks-over-threshold (POT) model with Poisson arrivals and generalized Pareto (GP) distributed exceedances remains a popular and useful tool for modelling hydrologic extremes. The use of the Poisson–GP model for flood frequency analysis requires the validation of the hypothesis that the distribution of the annual number of flood events may be described by a Poisson distribution. Such hypothesis is not always valid in practical applications. The present study concerns the use of an alternative distribution for modelling the annual number of floods—the zero-inflated Poisson (ZIP) distribution with two parameters. A ZIP–GP model for flood frequency analysis is proposed. This model is less restrictive than the Poisson–GP model since it allows for a more accurate description of the occurrence process in a POT framework if the fraction of years with no exceedances is significantly higher than the theoretical mass at zero of the Poisson distribution. Furthermore, a nonstationary model (NSZIP–GP) is presented, in which the parameters of the ZIP are allowed to change in time as a function of a covariate, which, even for stationary peak magnitudes, affects the annual maximum flood quantiles with a given non-exceedance probability. Applications of the ZIP–GP model to flood data from Northern Portugal and the evaluation of its performance relative to the Poisson–GP model, including assessments of quantile uncertainty, are presented. An illustrative application of the NSZIP–GP model, using the North Atlantic Oscillation as a covariate is also presented. The applications of both models include assessment of quantile uncertainty.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700