Evaluation of Suitable Reference Genes for Normalization of qPCR Gene Expression Studies in Brinjal (Solanum melongena L.) During Fruit Developmental Stages
详细信息    查看全文
  • 作者:Mogilicherla Kanakachari ; Amolkumar U. Solanke…
  • 关键词:Brinjal ; Days post anthesis ; Fruit development ; Gene expression ; Reference gene ; Normalization ; Quantitative real ; time PCR
  • 刊名:Applied Biochemistry and Biotechnology
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:178
  • 期:3
  • 页码:433-450
  • 全文大小:747 KB
  • 参考文献:1.Collonnier, C., Fock, I., Kashyap, V., Rotino, G. L., Daunay, M. C., Lian, Y., et al. (2001). Applications of biotechnology in eggplant. Plant Cell Tissue and Organ Culture, 65, 91–107. doi:10.​1023/​A:​ 1010674425536 .CrossRef
    2.Doganlar, S., Frary, A., Daunay, M. C., Lester, R. N., & Tanksley, S. D. (2002). A comparative genetic linkage map of eggplant (Solanum melongena L.) and its implications for genome evolution in the Solanaceae. Genetics, 161, 1697–1711.
    3.Kumar, G., Meena, B. L., Kar, R., Tiwari, S. K., Gangopadhyay, K. K., Bisht, I. S., et al. (2008). Morphological diversity in brinjal (Solanum melongena L.) germplasm accessions. Characterization and utilization. Plant Genetic Resources: Characterization and Utilization, 6(3), 232–236. doi:10.​1017/​S147926210899421​1 .CrossRef
    4.Nunome, T., Negoro, S., Kono, I., Kanamori, H., Miyatake, K., Yamaguchi, H., et al. (2009). Development of SSR markers derived from SSR-enriched genomic library of eggplant (Solanum melongena L.). Theoretical and Applied Genetics, 119, 1143–1153. doi:10.​1007/​s00122-009-1116-0 .CrossRef
    5.Fukuoka, H., Yamaguchi, H., Nunome, T., Negoro, S., Miyatake, K., & Ohyama, A. (2010). Accumulation, functional annotation, and comparative analysis of expressed sequence tags in eggplant (Solanum melongena L.), the third pole of the genus Solanum species after tomato and potato. Gene, 450, 76–84. doi:10.​1016/​j.​gene.​2009.​10.​006 .CrossRef
    6.Polignano, G., Uggenti, P., Bisignano, V., & Gatta, C. D. (2010). Genetic divergence analysis in eggplant (Solanum melongena L.) and allied species. Genetic Resources and Crop Evolution, 57, 171–181. doi:10.​1007/​s10722-009-9459-6 .CrossRef
    7.Barchi, L., Lanteri, S., Portis, E., Acquadro, A., Vale, G., Toppino, L., et al. (2011). Identification of SNP and SSR markers in eggplant using RAD tag sequencing. BMC Genomics, 12, 304. doi:10.​1186/​1471-2164-12-304 .CrossRef
    8.Rieu, I., & Powers, S. J. (2009). Real-time quantitative RT-PCR: design, calculations and statistics. The Plant Cell, 21, 1031–1033. doi:10.​1105/​tpc.​109.​066001 .CrossRef
    9.Guenin, S., Mauriat, M., Pelloux, J., Wuytswinkel, O. V., Bellini, C., & Gutierrez, L. (2009). Normalization of qRT-PCR data: the necessity of adopting a systematic, experimental conditions-specific, validation of references. Journal of Experimental Botany, 60(2), 487–493. doi:10.​1093/​jxb/​ern305 .CrossRef
    10.Le, D. T., Aldrich, D. L., Valliyodan, B., Watanabe, Y., Ha, C. V., Nishiyama, R., et al. (2012). Evaluation of candidate reference genes for normalization of quantitative RT-PCR in soybean tissues under various abiotic stress conditions. PLoS ONE, 7(9), e46487. doi:10.​1371/​journal.​pone.​0046487 .CrossRef
    11.Imai, T., Ubi, B. E., Saito, T., & Moriguchi, T. (2014). Evaluation of reference genes for accurate normalization of gene expression for real-time quantitative PCR in Pyrus pyrifolia using different tissue samples and seasonal conditions. PLoS ONE, 9(1), e86492. doi:10.​1371/​journal.​pone.​0086492 .CrossRef
    12.Bustin, S. A. (2002). Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. Journal of Molecular Endocrinology, 29, 23–39. doi:10.​1677/​jme.​0.​0290023 .CrossRef
    13.Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Roy, N. V., De Paepe, A., et al. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology, 3(7), 0034.1–0034.11. doi:10.​1186/​gb-2002-3-7-research0034 .CrossRef
    14.De Almeida, M. R., Ruedell, C. M., Ricachenevsky, F. K., Sperotto, R. A., Pasquali, G., & Fett-Neto, A. G. (2010). Reference gene selection for quantitative reverse transcription-polymerase chain reaction normalization during in vitro adventitious rooting in Eucalyptus globulus Labill. BMC Molecular Biology, 11, 73. doi:10.​1186/​1471-2199-11-73 .CrossRef
    15.Gachon, C., Mingam, A., & Charrier, B. (2004). Real-time PCR: what relevance to plant studies? Journal of Experimental Botany, 55(402), 1445–1454. doi:10.​1093/​jxb/​erh181 .CrossRef
    16.Nolan, T., Hands, R. E., & Bustin, S. A. (2006). Quantification of mRNA using real-time RT-PCR. Nature Protocols, 1(3), 1559–1582. doi:10.​1038/​nprot.​2006.​236 .CrossRef
    17.Kubista, M., Andrade, J. M., Bengtsson, M., Forootan, A., Jonak, E. J., Lind, K., et al. (2006). The real-time polymerase chain reaction. Molecular Aspects of Medicine, 27, 95–125. doi:10.​1016/​j.​mam.​2005.​12.​007 .CrossRef
    18.Cassan-Wang, H., Soler, M., Yu, H., Camargo, E. L. O., Carocha, V., Ladouce, N., et al. (2012). Reference genes for high-throughput quantitative reverse transcription–PCR analysis of gene expression in organs and tissues of Eucalyptus grown in various environmental conditions. Plant and Cell Physiology, 53(12), 2101–2116. doi:10.​1093/​pcp/​pcs152 .CrossRef
    19.Yeap, W.-C., Loo, J. M., Wong, Y. C., & Kulaveerasingam, H. (2014). Evaluation of suitable reference genes for qRT-PCR gene expression normalization in reproductive, vegetative tissues and during fruit development in oil palm. Plant Cell Tissue Organ Culture, 116, 55–66. doi:10.​1007/​s11240-013-0382-3 .CrossRef
    20.Dheda, K., Huggett, J. F., Chang, J. S., Kima, L. U., Bustinc, S. A., Johnson, M. A., et al. (2005). The implications of using an inappropriate reference gene for real-time reverse transcription PCR data normalization. Analytical Biochemistry, 344, 141–143. doi:10.​1016/​j.​ab.​2005.​05.​022 .CrossRef
    21.Gutierrez, L., Mauriat, M., Guenin, S., Pelloux, J., Lefebvre, J. F., Louvet, R., et al. (2008). The lack of a systematic validation of reference genes: a serious pitfall undervalued in reverse transcription polymerase chain reaction (RT-PCR) analysis in plants. Plant Biotechnology Journal, 6, 609–618. doi:10.​1111/​j.​1467-7652.​2008.​00346.​x . Epub 2008 Apr 22.CrossRef
    22.Ferguson, B. S., Nam, H., Hopkins, R. G., & Morrison, R. F. (2010). Impact of reference gene selection for target gene normalization on experimental outcome using real-time qRT-PCR in adipocytes. PLoS ONE, 5(12), e15208. doi:10.​1371/​journal.​pone.​0015208 .CrossRef
    23.Kong, Q., Yuan, J., Gao, L., Zhao, S., Jiang, W., Huang, Y., et al. (2014). Identification of suitable reference genes for gene expression normalization in qRT-PCR analysis in watermelon. PLoS ONE, 9(2), e90612. doi:10.​1371/​journal.​pone.​0090612 .CrossRef
    24.Watson, J. D., Hopkins, N. H., Roberts, J. W., Steitz, J. A., & Weiner, A. M. (1965). The functioning of higher eukaryotic genes. Molecular Biology of the Gene, 1(21), 704.
    25.Warrington, J. A., Nair, A., Mahadevappa, M., & Tsyganskaya, M. (2000). Comparison of human adult and fetal expression and identification of 535 housekeeping/maintenance genes. Physiological Genomics, 2, 143–147.
    26.Silver, N., Best, S., Jiang, J., & Thein, S. L. (2006). Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Molecular Biology, 7, 33. doi:10.​1186/​1471-2199-7-33 .CrossRef
    27.Kouadjo, K. E., Nishida, Y., Cadrin-Girard, J. F., Yoshioka, M., & St-Amand, J. (2007). Housekeeping and tissue-specific genes in mouse tissues. BMC Genomics, 8, 127. doi:10.​1186/​1471-2164-8-127 .CrossRef
    28.Andersen, C. L., Jensen, J. L., & Orntoft, T. F. (2004). Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Research, 64, 5245–5250. doi:10.​1158/​0008-5472 .CrossRef
    29.Exposito-Rodriguez, M., Borges, A. A., Borges-Perez, A., & Perez, J. A. (2008). Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process. BMC Plant Biology, 8, 131. doi:10.​1186/​1471-2229-8-131 .CrossRef
    30.Paolacci, A. R., Tanzarella, O. A., Porceddu, E., & Ciaffi, M. (2009). Identification and validation of reference genes for quantitative RT-PCR normalization in wheat. BMC Molecular Biology, 10, 11. doi:10.​1186/​1471-2199-10-11 .CrossRef
    31.Hellemans, J., Mortier, G., Paepe, A. D., Speleman, F., & Vandesompele, J. (2007). qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biology, 8(2), R19. doi:10.​1186/​gb-2007-8-2-r19 .CrossRef
    32.Gantasala, N. P., Papolu, P. K., Thakur, P. K., Kamaraju, D., Sreevathsa, R., & Rao, U. (2013). Selection and validation of reference genes for quantitative gene expression studies by real-time PCR in eggplant (Solanum melongena L). BMC Research Notes, 6, 312. doi:10.​1186/​1756-0500-6-312 .CrossRef
    33.Carles, C. C., & Fletcher, J. C. (2009). The SAND domain protein ULTRAPETALA1 acts as a trithorax group factor to regulate cell fate in plants. Genes and Development, 23, 2723–2728. doi:10.​1101/​gad.​1812609 .CrossRef
    34.Mafra, V., Kubo, K. S., Alves-Ferreira, M., Ribeiro-Alves, M., Stuart, R. M., Boava, L. P., et al. (2012). Reference genes for accurate transcript normalization in citrus genotypes under different experimental conditions. PLoS ONE, 7(2), e31263. doi:10.​1371/​journal.​pone.​0031263 .CrossRef
    35.Nakano, T., Fujisawa, M., Shima, Y., & Ito, Y. (2014). The AP2/ERF transcription factor SlERF52 functions in flower pedicel abscission in tomato. Journal of Experimental Botany, 65(12), 3111–9. doi:10.​1093/​jxb/​eru154 .CrossRef
    36.Demidenko, N. V., Logacheva, M. D., & Penin, A. A. (2011). Selection and validation of reference genes for quantitative real-time PCR in buckwheat (Fagopyrum esculentum) based on transcriptome sequence data. PLoS ONE, 6(5), e19434. doi:10.​1371/​journal.​pone.​0019434 .CrossRef
    37.Zhu, X., Li, X., Chen, W., Chen, J., Lu, W., Chen, L., et al. (2012). Evaluation of new reference genes in papaya for accurate transcript normalization under different experimental conditions. PLoS ONE, 7(8), e44405. doi:10.​1371/​journal.​pone.​0044405 .CrossRef
    38.Padmalatha, K. V., Dhandapani, G., Kanakachari, M., Kumar, S., Dass, A., Patil, D. P., et al. (2012). Genome-wide transcriptomic analysis of cotton under drought stress reveals significant down-regulation of genes and pathways involved in fibre elongation and up-regulation of defense responsive genes. Plant Molecular Biology, 78, 223–246. doi:10.​1007/​s11103-011-9857-y .CrossRef
    39.Artico, S., Nardeli, S. M., Brilhante, O., Grossi-de-Sa, M. F., & Alves-Ferreira, M. (2010). Identification and evaluation of new reference genes in Gossypium hirsutum for accurate normalization of real-time quantitative RT-PCR data. BMC Plant Biology, 10, 49. doi:10.​1186/​1471-2229-10-49 .CrossRef
    40.LiLi, T., XianLong, Z., DiQiu, L., ShuangXia, J., JingLin, C., LongFu, Z., et al. (2007). Suitable internal control genes for qRT-PCR normalization in cotton fiber development and somatic embryogenesis. Chinese Science Bulletin, 52(22), 3110–3117. doi:10.​1007/​s11434-007-0461-0 .CrossRef
    41.Wan, H., Yuan, W., Ruan, M., Ye, Q., Wang, R., Li, Z., et al. (2011). Identification of reference genes for reverse transcription quantitative real-time PCR normalization in pepper (Capsicum annuum L.). Biochemical and Biophysical Research Communications, 416, 24–30. doi:10.​1016/​j.​bbrc.​2011.​10.​105 .CrossRef
    42.Jian, B., Liu, B., Bi, Y., Hou, W., Wu, C., & Han, T. (2008). Validation of internal control for gene expression study in soybean by quantitative real-time PCR. BMC Molecular Biology, 9, 59. doi:10.​1186/​1471-2199-9-59 .CrossRef
    43.Schmidt, G. W., & Delaney, S. K. (2010). Stable internal reference genes for normalization of real-time RT-PCR in tobacco (Nicotiana tabacum) during development and abiotic stress. Molecular Genetics and Genomics, 283, 233–241. doi:10.​1007/​s00438-010-0511-1 .CrossRef
    44.Reddy, D. S., Bhatnagar-Mathur, P., Cindhuri, K. S., & Sharma, K. K. (2013). Evaluation and validation of reference genes for normalization of quantitative real-time PCR based gene expression studies in peanut. PLoS ONE, 8(10), e78555. doi:10.​1371/​journal.​pone.​0078555 .CrossRef
    45.Barsalobres-Cavallari, C., Severino, F. E., Maluf, M. P., & Maia, I. G. (2009). Identification of suitable internal control genes for expression studies in Coffea arabica under different experimental conditions. BMC Molecular Biology, 10, 1. doi:10.​1186/​1471-2199-10-1 .CrossRef
    46.Chandna, R., Augustine, R., & Bisht, N. C. (2012). Evaluation of candidate reference genes for gene expression normalization in Brassica juncea using real time quantitative RT-PCR. PLoS ONE, 7(5), e36918. doi:10.​1371/​journal.​pone.​0036918 .CrossRef
    47.Amil-Ruiz, F., Garrido-Gala, J., Blanco-Portales, R., Folta, K. M., Munoz-Blanco, J., & Caballero, J. L. (2013). Identification and validation of reference genes for transcript normalization in strawberry (Fragaria ananassa) defense responses. PLoS ONE, 8(8), e70603. doi:10.​1371/​journal.​pone.​0070603 .CrossRef
    48.Tong, Z., Gao, Z., Wang, F., Zhou, J., & Zhang, Z. (2009). Selection of reliable reference genes for gene expression studies in peach using real-time PCR. BMC Molecular Biology, 10, 71. doi:10.​1186/​1471-2199-10-71 .CrossRef
    49.Liavonchanka, A., & Feussner, I. (2006). Lipoxygenases: occurrence, functions and catalysis. Journal of Plant Physiology, 163, 348–357. doi:10.​1016/​j.​jplph.​2005.​11.​006 .CrossRef
    50.Porta, H., & Rocha-Sosa, M. (2002). Plant lipoxygenases: physiological and molecular features. Journal of Plant Physiology, 130, 15–21. doi:10.​1104/​pp.​ 010787 .CrossRef
    51.Feng, B., Dong, Z., Xu, Z., An, X., Qin, H., Wu, N., et al. (2010). Molecular analysis of lipoxygenase (LOX) genes in common wheat and phylogenetic investigation of LOX proteins from model and crop plants. Journal of Cereal Science, 52, 387–394. doi:10.​1016/​j.​jcs.​2010.​06.​019 .CrossRef
    52.Umate, P. (2011). Genome-wide analysis of lipoxygenase gene family in Arabidopsis and rice. Plant Signaling & Behavior, 6(3), 335–338. doi:10.​4161/​psb.​6.​3.​13546 .CrossRef
    53.Wang, R., Shen, W., Liu, L., Jiang, L., Liu, Y., Su, N., et al. (2008). A novel lipoxygenase gene from developing rice seeds confers dual position specificity and responds to wounding and insect attack. Plant Molecular Biology, 66(4), 401–414. doi:10.​1007/​s11103-007-9278-0 .CrossRef
    54.Vellosillo, T., Martinez, M., Lopez, M. A., Vicente, J., Cascon, T., Dolan, L., et al. (2007). Oxylipins produced by the 9-lipoxygenase pathway in Arabidopsis regulate lateral root development and defense responses through a specific signaling cascade. Plant Cell, 19, 831–846. doi:10.​1105/​tpc.​106.​046052 .CrossRef
  • 作者单位:Mogilicherla Kanakachari (1) (2)
    Amolkumar U. Solanke (1)
    Narayanasamy Prabhakaran (1) (3)
    Israr Ahmad (1) (4)
    Gurusamy Dhandapani (1)
    Narayanasamy Jayabalan (2)
    Polumetla Ananda Kumar (1) (5)

    1. ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
    2. Department of Plant Science, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
    3. Division of Plant Pathology, Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012, India
    4. Division of Crop Improvement and Biotechnology, ICAR-Central Institute for Subtropical Horticulture, Pusa Campus, Lucknow, Uttar Pradesh, 227107, India
    5. Division of Biotechnology, ICAR-Indian Institute of Rice Research (IIRR), Rajendranagar, Hyderabad, 500030, India
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Biochemistry
  • 出版者:Humana Press Inc.
  • ISSN:1559-0291
文摘
Brinjal/eggplant/aubergine is one of the major solanaceous vegetable crops. Recent availability of genome information greatly facilitates the fundamental research on brinjal. Gene expression patterns during different stages of fruit development can provide clues towards the understanding of its biological functions. Quantitative real-time PCR (qPCR) has become one of the most widely used methods for rapid and accurate quantification of gene expression. However, its success depends on the use of a suitable reference gene for data normalization. For qPCR analysis, a single reference gene is not universally suitable for all experiments. Therefore, reference gene validation is a crucial step. Suitable reference genes for qPCR analysis of brinjal fruit development have not been investigated so far. In this study, we have selected 21 candidate reference genes from the Brinjal (Solanum melongena) Plant Gene Indices database (compbio.dfci.harvard.edu/tgi/plant.html) and studied their expression profiles by qPCR during six different fruit developmental stages (0, 5, 10, 20, 30, and 50 days post anthesis) along with leaf samples of the Pusa Purple Long (PPL) variety. To evaluate the stability of gene expression, geNorm and NormFinder analytical softwares were used. geNorm identified SAND (SAND family protein) and TBP (TATA binding protein) as the best pairs of reference genes in brinjal fruit development. The results showed that for brinjal fruit development, individual or a combination of reference genes should be selected for data normalization. NormFinder identified Expressed gene (expressed sequence) as the best single reference gene in brinjal fruit development. In this study, we have identified and validated for the first time reference genes to provide accurate transcript normalization and quantification at various fruit developmental stages of brinjal which can also be useful for gene expression studies in other Solanaceae plant species.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700