Dissolution and transformation of cerium oxide nanoparticles in plant growth media
详细信息    查看全文
  • 作者:Franziska Schwabe (1)
    Rainer Schulin (1)
    Patrick Rupper (2)
    Aline Rotzetter (3)
    Wendelin Stark (3)
    Bernd Nowack (4)
  • 关键词:Nanoparticles ; Ce3+ and Ce4+ ; Dissolution ; Hoagland medium ; Fe species ; Environmental effects
  • 刊名:Journal of Nanoparticle Research
  • 出版年:2014
  • 出版时间:October 2014
  • 年:2014
  • 卷:16
  • 期:10
  • 全文大小:816 KB
  • 参考文献:1. Baalousha M, Le Coustumer P, Jones I, Lead JR (2010) Characterisation of structural and surface speciation of representative commercially available cerium oxide nanoparticles. Environ Chem 7(4):377鈥?85 CrossRef
    2. Batley GE, Kirby JK, McLaughlin MJ (2013) Fate and risks of nanomaterials in aquatic and terrestrial environments. Acc Chem Res 46(3):854鈥?62 CrossRef
    3. Brunner TJ, Wick P, Manser P, Spohn P, Grass RN, Limbach LK, Bruinink A, Stark WJ (2006) In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ Sci Technol 40:4374鈥?381 CrossRef
    4. Cervini-Silva J, Fowle DA, Banfield J (2005) Biogenic dissolution of a soil cerium-phosphate mineral. Am J Sci 305(6鈥?):711鈥?26 CrossRef
    5. Deshpande S, Patil S, Kuchibhatla SVNT, Seal S (2005) Size dependency variation in lattice parameter and valency states in nanocrystalline cerium oxide. Appl Phys Lett 87(13):133113 CrossRef
    6. Du WC, Sun YY, Ji R, Zhu JG, Wu JC, Guo HY (2011) TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. J Environ Monit 13(4):822鈥?28 CrossRef
    7. Gottschalk F, Nowack B (2011) The release of engineered nanomaterials to the environment. J Environ Monit 13(5):1145鈥?155 CrossRef
    8. Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43:9216鈥?222
    9. Gustafsson JP (2011) Visual MINTEQ version 3.0. http://www2.lwr.kth.se/English/Oursoftware/vminteq/index.html. Accessed 1 Oct 2014
    10. Handy RD, Cornelis G, Fernandes T, Tsyusko O, Decho A, Sabo-Attwood T, Metcalfe C, Steevens JA, Klaine SJ, Koelmans AA, Horne N (2012) Ecotoxicity test methods for engineered nanomaterials: practical experiences and recommendations from the bench. Environ Toxicol Chem 31(1):15鈥?1 CrossRef
    11. Hoecke KV, Quik JTK, Mankiewicz-Boczek J, Schamphelaere KACD, Elsaesser A, Meeren PVd, Barnes C, McKerr G, Howard CV, Meent DVD, Rydzy艅ski K, Dawson KA, Salvati A, Lesniak A, Lynch I, Silversmit G, Samber BrD, Vincze L, Janssen CR (2009) Fate and effects of CeO2 nanoparticles in aquatic ecotoxicity tests. Environ Sci Technol 43(12):4537鈥?546. doi:10.1021/es9002444 CrossRef
    12. Ilan YA, Czapski G, Meisel D (1976) The one-electron transfer redox potentials of free radicals. I. The oxygen/superoxide system. Biochim Biophys Acta 430(2):209鈥?24 CrossRef
    13. Kakuwa Y, Matsumoto R (2006) Cerium negative anomaly just before the Permian and Triassic boundary event鈥攖he upward expansion of anoxia in the water column. Palaeogeogr Palaeoclimatol Palaeoecol 229(4):335鈥?44 CrossRef
    14. Li ZM, Zhu FR, Zhang ZB, Ren XJ, Deng H, Zhai LH, Zhang LX (2004) Laser resonance ionization spectroscopy of even-parity autoionization states of cerium atom. Guang pu xue yu guang pu fen xi =Guang pu 24(12):1494鈥?498
    15. Limbach LK, Li YC, Grass RN, Brunner TJ, Hintermann MA, Muller M, Gunther D, Stark WJ (2005) Oxide nanoparticle uptake in human lung fibroblasts: effects of particle size, agglomeration, and diffusion at low concentrations. Environ Sci Technol 39(23):9370鈥?376. doi:10.1021/es051043o CrossRef
    16. Ma XM, Geiser-Lee J, Deng Y, Kolmakov A (2010) Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408(16):3053鈥?061 CrossRef
    17. Madler L, Stark WJ, Pratsinis SE (2002) Flame-made ceria nanoparticles. J Mater Res 17(6):1356鈥?362 CrossRef
    18. Miralles P, Church TL, Harris AT (2012) Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants. Environ Sci Technol 46(17):9224鈥?239 CrossRef
    19. Mueller NC, Nowack B (2008) Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42(12):4447鈥?453 CrossRef
    20. Nowack B, VanBriesen J (eds) (2005) Chelating agents in the environment. In: Biogeochemistry of chelating agents, vol 910. ACS Symposium Series, pp 1鈥?8
    21. Nowack B, Ranville JF, Diamond S, Gallego-Urrea JA, Metcalfe C, Rose J, Horne N, Koelmans AA, Klaine SJ (2012) Potential scenarios for nanomaterial release and subsequent alteration in the environment. Environ Toxicol Chem 31(1):50鈥?9 CrossRef
    22. Pardo A, Merino MC, Arrabal R, Viejo F, Munoz JA (2007) Ce conversion and electrolysis surface treatments applied to A3xx.x alloys and A3xx.x/SiCp composites. Appl Surf Sci 253(6):3334鈥?344 CrossRef
    23. Phillips EJP, Lovley DR (1987) Determination of Fe(Iii) and Fe(Ii) in Oxalate Extracts of Sediment. Soil Sci Soc Am J 51(4):938鈥?41 CrossRef
    24. Schwabe F, Schulin R, Limbach LK, Stark W, Burge D, Nowack B (2013) Influence of two types of organic matter on interaction of CeO2 nanoparticles with plants in hydroponic culture. Chemosphere 91(4):512鈥?20. doi:10.1016/j.chemosphere.2012.12.025 CrossRef
    25. Scown TM, Santos EM, Johnston BD, Gaiser B, Baalousha M, Mitov S, Lead JR, Stone V, Fernandes TF, Jepson M, van Aerle R, Tyler CR (2010) Effects of aqueous exposure to silver nanoparticles of different sizes in rainbow trout. Toxicol Sci 115(2):521鈥?34. doi:10.1093/Toxsci/Kfq076 CrossRef
    26. Seah MP, Dench WA (1979) Quantitative electron spectroscopy of surfaces: a standard data base for electron inelastic mean free paths in solids. Surf Interface Anal 1(1):2鈥?1 CrossRef
    27. Singh S, Dosani T, Karakoti AS, Kumar A, Seal S, Self WT (2011) A phosphate-dependent shift in redox state of cerium oxide nanoparticles and its effects on catalytic properties. Biomaterials 32(28):6745鈥?753. doi:10.1016/j.biomaterials.2011.05.073 CrossRef
    28. Smith RM, Martell AE (2004) NIST critically selected stability constants of metal complexes, version 2.0. U.S. Department of Commerce, Gaithersburg
    29. Stark WJ, Madler L, Maciejewski M, Pratsinis SE, Baiker A (2003) Flame synthesis of nanocrystalline ceria-zirconia: effect of carrier liquid. Chem Commun 5:588鈥?89. doi:10.1039/b211831a CrossRef
    30. Stumm W (1992) Chemistry of the solid-water interface: processes at the mineral-water and particle-water interface in natural systems. Wiley, New York
    31. Tandy S, Schulin R, Nowack B (2006) The influence of EDDS on the uptake of heavy metals in hydroponically grown sunflowers. Chemosphere 62(9):1454鈥?463 CrossRef
    32. Teterin YA, Teterin AY, Lebedev AM, Utkin IO (1998) The XPS spectra of cerium compounds containing oxygen. J Electron Spectrosc 88:275鈥?79 CrossRef
    33. Thill A, Zeyons O, Spalla O, Chauvat F, Rose J, Auffan M, Flank AM (2006) Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism. Environ Sci Technol 40:6151鈥?156 CrossRef
    34. Trinidad P, de Leon CP, Walsh FC (2008) The use of electrolyte redox potential to monitor the Ce(IV)/Ce(III) couple. J Environ Manage 88(4):1417鈥?425 CrossRef
    35. Trovarelli A, Boaro M, Rocchini E, de Leitenburg C, Dolcetti G (2001) Some recent developments in the characterization of ceria-based catalysts. J Alloy Compd 323:584鈥?91 CrossRef
    36. Tsunekawa S, Sahara R, Kawazoe Y, Ishikawa K (1999) Lattice relaxation of monosize CeO2-x nanocrystalline particles. Appl Surf Sci 152(1鈥?):53鈥?6 CrossRef
    37. Walser T, Limbach LK, Brogioli R, Erismann E, Flamigni L, Hattendorf B, Juchli M, Krumeich F, Ludwig C, Prikopsky K, Rossier M, Saner D, Sigg A, Hellweg S, Gunther D, Stark WJ (2012) Persistence of engineered nanoparticles in a municipal solid-waste incineration plant. Nat Nanotechnol 7(8):520鈥?24 CrossRef
    38. Wang Z, Xie X, Zhao J, Liu X, Feng W, White JC, Xing B (2012) Xylem- and phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Environ Sci Technol 46(8):4434鈥?441. doi:10.1021/es204212z CrossRef
    39. Wu LJ, Wiesmann HJ, Moodenbaugh AR, Klie RF, Zhu YM, Welch DO, Suenaga M (2004) Oxidation state and lattice expansion of CeO2-x nanoparticles as a function of particle size. Phys Rev B 69(12):125415 CrossRef
    40. Zhang F, Jin Q, Chan SW (2004a) Ceria nanoparticles: size, size distribution, and shape. J Appl Phys 95(8):4319鈥?326 CrossRef
    41. Zhang F, Wang P, Koberstein J, Khalid S, Chan SW (2004b) Cerium oxidation state in ceria nanoparticles studied with X-ray photoelectron spectroscopy and absorption near edge spectroscopy. Surf Sci 563(1鈥?):74鈥?2 CrossRef
    42. Zhang ZY, He X, Zhang HF, Ma YH, Zhang P, Ding YY, Zhao YL (2011) Uptake and distribution of ceria nanoparticles in cucumber plants. Metallomics 3(8):816鈥?22 CrossRef
    43. Zhang P, Ma YH, Zhang ZY, He X, Zhang J, Guo Z, Tai RZ, Zhao YL, Chai ZF (2012) Biotransformation of ceria nanoparticles in cucumber plants. ACS Nano 6(11):9943鈥?950 CrossRef
    44. Zhao LJ, Peralta-Videa JR, Varela-Ramirez A, Castillo-Michel H, Li CQ, Zhang JY, Aguilera RJ, Keller AA, Gardea-Torresdey JL (2012) Effect of surface coating and organic matter on the uptake of CeO2 NPs by corn plants grown in soil: insight into the uptake mechanism. J Hazard Mater 225:131鈥?38 CrossRef
    45. Zhu H, Han J, Xiao JQ, Jin Y (2008) Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monit 10:713鈥?17 CrossRef
  • 作者单位:Franziska Schwabe (1)
    Rainer Schulin (1)
    Patrick Rupper (2)
    Aline Rotzetter (3)
    Wendelin Stark (3)
    Bernd Nowack (4)

    1. Soil Protection, Institute of Terrestrial Ecosystems, ETH-Zurich, Universitaetstrasse 16, 8092, Zurich, Switzerland
    2. Laboratory of Advanced Fibers, Empa-Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland
    3. Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, 8093, Zurich, Switzerland
    4. Technology & Society Laboratory, Empa-Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland
  • ISSN:1572-896X
文摘
From environmental modeling of engineered nanomaterial (ENM) release, it is clear that ENMs will enter soils, where they interact with soil compounds as well as plant roots. We analyzed three different size groups of cerium dioxide nanoparticles (CeO2-NPs) in respect to chemical changes in the most common plant growth medium, Hoagland solution. We created a simple environmental model using liquid dispersions of 9-, 23-, and 64-nm-uncoated CeO2-NPs. We found that CeO2-NPs release dissolved Ce when the pH of the medium is below 4.6 and in the presence of strong chelating agents even at pH of 8. In addition, we found that in reaction with Fe2+-ions, equimolar amounts of Ce were released from NPs. We could elucidate the involvement of the CeO2-NPs surface redox cycle between Ce3+ and Ce4+ to explain particle transformation. The chemical transformation of CeO2-NPs was summarized in four probable reactions: dissolution, surface reduction, complexation, and precipitation on the NP surface. The results show that CeO2-NPs are clearly not insoluble as often stated but can release significant amounts of Ce depending on the composition of the surrounding medium.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700