Location- and Subunit-Specific NMDA Receptors Determine the Developmental Sevoflurane Neurotoxicity Through ERK1/2 Signaling
详细信息    查看全文
  • 作者:Wen-Yuan Wang ; Li-Jie Jia ; Yan Luo ; Hong-Hai Zhang ; Fang Cai…
  • 关键词:Sevoflurane ; NR2A ; containing NMDA receptors ; NR2B ; containing NMDA receptors ; Apoptosis ; ERK1/2 MAPK signaling ; Developing brain
  • 刊名:Molecular Neurobiology
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:53
  • 期:1
  • 页码:216-230
  • 全文大小:3,016 KB
  • 参考文献:1.Lu Y, Wu X, Dong Y, Xu Z, Zhang Y, Xie Z (2010) Anesthetic sevoflurane causes neurotoxicity differently in neonatal naive and Alzheimer disease transgenic mice. Anesthesiology 112(6):1404–1416CrossRef PubMed PubMedCentral
    2.Zhang X, Xue Z, Sun A (2008) Subclinical concentration of sevoflurane potentiates neuronal apoptosis in the developing C57BL/6 mouse brain. Neurosci Lett 447(2–3):109–114CrossRef PubMed
    3.Edwards DA, Shah HP, Cao W, Gravenstein N, Seubert CN, Martynyuk AE (2010) Bumetanide alleviates epileptogenic and neurotoxic effects of sevoflurane in neonatal rat brain. Anesthesiology 112(3):567–575CrossRef PubMed
    4.Satomoto M, Satoh Y, Terui K, Miyao H, Takishima K, Ito M, Imaki J (2009) Neonatal exposure to sevoflurane induces abnormal social behaviors and deficits in fear conditioning in mice. Anesthesiology 110(3):628–637CrossRef PubMed
    5.Shih J, May LD, Gonzalez HE, Lee EW, Alvi RS, Sall JW, Rau V, Bickler PE, Lalchandani GR, Yusupova M, Woodward E, Kang H, Wilk AJ, Carlston CM, Mendoza MV, Guggenheim JN, Schaefer M, Rowe AM, Stratmann G (2012) Delayed environmental enrichment reverses sevoflurane-induced memory impairment in rats. Anesthesiology 116(3):586–602CrossRef PubMed PubMedCentral
    6.Young C, Jevtovic-Todorovic V, Qin YQ, Tenkova T, Wang H, Labruyere J, Olney JW (2005) Potential of ketamine and midazolam, individually or in combination, to induce apoptotic neurodegeneration in the infant mouse brain. Br J Pharmacol 146(2):189–197CrossRef PubMed PubMedCentral
    7.Hardingham GE, Bading H (2003) The Yin and Yang of NMDA receptor signalling. Trends Neurosci 26(2):81–89CrossRef PubMed
    8.Ikonomidou C, Bosch F, Miksa M, Bittigau P, Vockler J, Dikranian K, Tenkova TI, Stefovska V, Turski L, Olney JW (1999) Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain. Science 283(5398):70–74CrossRef PubMed
    9.Adams SM, de Rivero Vaccari JC, Corriveau RA (2004) Pronounced cell death in the absence of NMDA receptors in the developing somatosensory thalamus. J Neurosci 24(42):9441–9450CrossRef PubMed
    10.Hardingham GE, Bading H (2010) Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci 11(10):682–696CrossRef PubMed PubMedCentral
    11.Parsons MP, Raymond LA (2014) Extrasynaptic NMDA receptor involvement in central nervous system disorders. Neuron 82(2):279–293CrossRef PubMed
    12.Leveille F, El Gaamouch F, Gouix E, Lecocq M, Lobner D, Nicole O, Buisson A (2008) Neuronal viability is controlled by a functional relation between synaptic and extrasynaptic NMDA receptors. FASEB J 22(12):4258–4271CrossRef PubMed
    13.Ivanov A, Pellegrino C, Rama S, Dumalska I, Salyha Y, Ben-Ari Y, Medina I (2006) Opposing role of synaptic and extrasynaptic NMDA receptors in regulation of the extracellular signal-regulated kinases (ERK) activity in cultured rat hippocampal neurons. J Physiol 572(Pt 3):789–798CrossRef PubMed PubMedCentral
    14.Hansen HH, Briem T, Dzietko M, Sifringer M, Voss A, Rzeski W, Zdzisinska B, Thor F, Heumann R, Stepulak A, Bittigau P, Ikonomidou C (2004) Mechanisms leading to disseminated apoptosis following NMDA receptor blockade in the developing rat brain. Neurobiol Dis 16(2):440–453CrossRef PubMed
    15.Wang WY, Luo Y, Jia LJ, Hu SF, Lou XK, Shen SL, Lu H, Zhang HH, Yang R, Wang H, Ma ZW, Xue QS, Yu BW (2014) Inhibition of aberrant cyclin-dependent kinase 5 activity attenuates isoflurane neurotoxicity in the developing brain. Neuropharmacology 77:90–99CrossRef PubMed
    16.Wang WY, Wang H, Luo Y, Jia LJ, Zhao JN, Zhang HH, Ma ZW, Xue QS, Yu BW (2012) The effects of metabotropic glutamate receptor 7 allosteric agonist N, N'-dibenzhydrylethane-1,2-diamine dihydrochloride on developmental sevoflurane neurotoxicity: role of extracellular signal-regulated kinase 1 and 2 mitogen-activated protein kinase signaling pathway. Neuroscience 205:167–177CrossRef PubMed
    17.Wang WY, Yang R, Hu SF, Wang H, Ma ZW, Lu Y (2013) N-stearoyl-l -tyrosine ameliorates sevoflurane induced neuroapoptosis via MEK/ERK1/2 MAPK signaling pathway in the developing brain. Neurosci Lett 541:167–172CrossRef PubMed
    18.Kaech S, Banker G (2006) Culturing hippocampal neurons. Nat Protoc 1(5):2406–2415CrossRef PubMed
    19.Monyer H, Burnashev N, Laurie DJ, Sakmann B, Seeburg PH (1994) Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12(3):529–540CrossRef PubMed
    20.Sprengel R, Suchanek B, Amico C, Brusa R, Burnashev N, Rozov A, Hvalby O, Jensen V, Paulsen O, Andersen P, Kim JJ, Thompson RF, Sun W, Webster LC, Grant SG, Eilers J, Konnerth A, Li J, McNamara JO, Seeburg PH (1998) Importance of the intracellular domain of NR2 subunits for NMDA receptor function in vivo. Cell 92(2):279–289CrossRef PubMed
    21.Papadia S, Soriano FX, Leveille F, Martel MA, Dakin KA, Hansen HH, Kaindl A, Sifringer M, Fowler J, Stefovska V, McKenzie G, Craigon M, Corriveau R, Ghazal P, Horsburgh K, Yankner BA, Wyllie DJ, Ikonomidou C, Hardingham GE (2008) Synaptic NMDA receptor activity boosts intrinsic antioxidant defenses. Nat Neurosci 11(4):476–487CrossRef PubMed PubMedCentral
    22.Jiang X, Tian F, Mearow K, Okagaki P, Lipsky RH, Marini AM (2005) The excitoprotective effect of N-methyl-d -aspartate receptors is mediated by a brain-derived neurotrophic factor autocrine loop in cultured hippocampal neurons. J Neurochem 94(3):713–722CrossRef PubMed
    23.Soriano FX, Papadia S, Hofmann F, Hardingham NR, Bading H, Hardingham GE (2006) Preconditioning doses of NMDA promote neuroprotection by enhancing neuronal excitability. J Neurosci 26(17):4509–4518CrossRef PubMed PubMedCentral
    24.Tackenberg C, Grinschgl S, Trutzel A, Santuccione AC, Frey MC, Konietzko U, Grimm J, Brandt R, Nitsch RM (2013) NMDA receptor subunit composition determines beta-amyloid-induced neurodegeneration and synaptic loss. Cell Death Dis 4:e608CrossRef PubMed PubMedCentral
    25.Lipton SA (2006) Paradigm shift in neuroprotection by NMDA receptor blockade: memantine and beyond. Nat Rev Drug Discov 5(2):160–170CrossRef PubMed
    26.Campagna JA, Miller KW, Forman SA (2003) Mechanisms of actions of inhaled anesthetics. N Engl J Med 348(21):2110–2124CrossRef PubMed
    27.Lerman J, Sikich N, Kleinman S, Yentis S (1994) The pharmacology of sevoflurane in infants and children. Anesthesiology 80(4):814–824CrossRef PubMed
    28.Yon JH, Daniel-Johnson J, Carter LB, Jevtovic-Todorovic V (2005) Anesthesia induces neuronal cell death in the developing rat brain via the intrinsic and extrinsic apoptotic pathways. Neuroscience 135(3):815–827CrossRef PubMed
    29.Dobbing J, Sands J (1979) Comparative aspects of the brain growth spurt. Early Hum Dev 3(1):79–83CrossRef PubMed
    30.Istaphanous GK, Howard J, Nan X, Hughes EA, McCann JC, McAuliffe JJ, Danzer SC, Loepke AW (2011) Comparison of the neuroapoptotic properties of equipotent anesthetic concentrations of desflurane, isoflurane, or sevoflurane in neonatal mice. Anesthesiology 114(3):578–587CrossRef PubMed
    31.Anastasio NC, Johnson KM (2008) Differential regulation of the NMDA receptor by acute and sub-chronic phencyclidine administration in the developing rat. J Neurochem 104(5):1210–1218CrossRef PubMed
    32.Han LC, Yao LN, Wu SX, Yang YH, Xu LX, Chai W (2010) The effect of ketamine on N-methyl-d -aspartate receptor subunit expression in neonatal rats. Eur J Anaesthesiol 27(2):181–186CrossRef PubMed
    33.Narita M, Soma M, Mizoguchi H, Tseng LF, Suzuki T (2000) Implications of the NR2B subunit-containing NMDA receptor localized in mouse limbic forebrain in ethanol dependence. Eur J Pharmacol 401(2):191–195CrossRef PubMed
    34.Fujisawa S, Aoki C (2003) In vivo blockade of N-methyl-d -aspartate receptors induces rapid trafficking of NR2B subunits away from synapses and out of spines and terminals in adult cortex. Neuroscience 121(1):51–63CrossRef PubMed PubMedCentral
    35.Tovar KR, Westbrook GL (2002) Mobile NMDA receptors at hippocampal synapses. Neuron 34(2):255–264CrossRef PubMed
    36.Hardingham GE, Fukunaga Y, Bading H (2002) Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat Neurosci 5(5):405–414PubMed
    37.Townsend M, Yoshii A, Mishina M, Constantine-Paton M (2003) Developmental loss of miniature N-methyl-d -aspartate receptor currents in NR2A knockout mice. Proc Natl Acad Sci U S A 100(3):1340–1345CrossRef PubMed PubMedCentral
    38.Tovar KR, Westbrook GL (1999) The incorporation of NMDA receptors with a distinct subunit composition at nascent hippocampal synapses in vitro. J Neurosci 19(10):4180–4188PubMed
    39.Thomas CG, Miller AJ, Westbrook GL (2006) Synaptic and extrasynaptic NMDA receptor NR2 subunits in cultured hippocampal neurons. J Neurophysiol 95(3):1727–1734CrossRef PubMed
    40.Martel MA, Ryan TJ, Bell KF, Fowler JH, McMahon A, Al-Mubarak B, Komiyama NH, Horsburgh K, Kind PC, Grant SG, Wyllie DJ, Hardingham GE (2012) The subtype of GluN2 C-terminal domain determines the response to excitotoxic insults. Neuron 74(3):543–556CrossRef PubMed PubMedCentral
    41.Massey PV, Johnson BE, Moult PR, Auberson YP, Brown MW, Molnar E, Collingridge GL, Bashir ZI (2004) Differential roles of NR2A and NR2B-containing NMDA receptors in cortical long-term potentiation and long-term depression. J Neurosci 24(36):7821–7828CrossRef PubMed
    42.Liu L, Wong TP, Pozza MF, Lingenhoehl K, Wang Y, Sheng M, Auberson YP, Wang YT (2004) Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity. Science 304(5673):1021–1024CrossRef PubMed
    43.Gambrill AC, Barria A (2011) NMDA receptor subunit composition controls synaptogenesis and synapse stabilization. Proc Natl Acad Sci U S A 108(14):5855–5860CrossRef PubMed PubMedCentral
    44.Bordji K, Becerril-Ortega J, Nicole O, Buisson A (2010) Activation of extrasynaptic, but not synaptic, NMDA receptors modifies amyloid precursor protein expression pattern and increases amyloid-ss production. J Neurosci 30(47):15927–15942CrossRef PubMed
    45.Wroge CM, Hogins J, Eisenman L, Mennerick S (2012) Synaptic NMDA receptors mediate hypoxic excitotoxic death. J Neurosci 32(19):6732–6742CrossRef PubMed PubMedCentral
    46.Li B, Chen N, Luo T, Otsu Y, Murphy TH, Raymond LA (2002) Differential regulation of synaptic and extra-synaptic NMDA receptors. Nat Neurosci 5(9):833–834CrossRef PubMed
    47.Papadia S, Stevenson P, Hardingham NR, Bading H, Hardingham GE (2005) Nuclear Ca2+ and the cAMP response element-binding protein family mediate a late phase of activity-dependent neuroprotection. J Neurosci 25(17):4279–4287CrossRef PubMed
    48.Vanhoutte P, Bading H (2003) Opposing roles of synaptic and extrasynaptic NMDA receptors in neuronal calcium signalling and BDNF gene regulation. Curr Opin Neurobiol 13(3):366–371CrossRef PubMed
    49.Zhang SJ, Zou M, Lu L, Lau D, Ditzel DA, Delucinge-Vivier C, Aso Y, Descombes P, Bading H (2009) Nuclear calcium signaling controls expression of a large gene pool: identification of a gene program for acquired neuroprotection induced by synaptic activity. PLoS Genet 5(8):e1000604CrossRef PubMed PubMedCentral
    50.Xia P, Chen HS, Zhang D, Lipton SA (2010) Memantine preferentially blocks extrasynaptic over synaptic NMDA receptor currents in hippocampal autapses. J Neurosci 30(33):11246–11250CrossRef PubMed PubMedCentral
    51.Owley T, Salt J, Guter S, Grieve A, Walton L, Ayuyao N, Leventhal BL, Cook EH Jr (2006) A prospective, open-label trial of memantine in the treatment of cognitive, behavioral, and memory dysfunction in pervasive developmental disorders. J Child Adolesc Psychopharmacol 16(5):517–524CrossRef PubMed
    52.Jezova D, Oliver C, Jurcovicov J (1991) Stimulation of adrenocorticotropin but not prolactin and catecholamine release by N-methyl-aspartic acid. Neuroendocrinology 54(5):488–492CrossRef PubMed
    53.Rosi S, Vazdarjanova A, Ramirez-Amaya V, Worley PF, Barnes CA, Wenk GL (2006) Memantine protects against LPS-induced neuroinflammation, restores behaviorally-induced gene expression and spatial learning in the rat. Neuroscience 142(4):1303–1315CrossRef PubMed
    54.Liu MY, Wang S, Yao WF, Zhang ZJ, Zhong X, Sha L, He M, Zheng ZH, Wei MJ (2014) Memantine improves spatial learning and memory impairments by regulating NGF signaling in APP/PS1 transgenic mice. Neuroscience 273:141–151CrossRef PubMed
    55.Ishikawa R, Kim R, Namba T, Kohsaka S, Uchino S, Kida S (2014) Time-dependent enhancement of hippocampus-dependent memory after treatment with memantine: Implications for enhanced hippocampal adult neurogenesis. Hippocampus 24(7):784–793CrossRef PubMed
    56.Lu W, Man H, Ju W, Trimble WS, MacDonald JF, Wang YT (2001) Activation of synaptic NMDA receptors induces membrane insertion of new AMPA receptors and LTP in cultured hippocampal neurons. Neuron 29(1):243–254CrossRef PubMed
    57.Shimizu E, Tang YP, Rampon C, Tsien JZ (2000) NMDA receptor-dependent synaptic reinforcement as a crucial process for memory consolidation. Science 290(5494):1170–1174CrossRef PubMed
    58.Nakazawa K, Quirk MC, Chitwood RA, Watanabe M, Yeckel MF, Sun LD, Kato A, Carr CA, Johnston D, Wilson MA, Tonegawa S (2002) Requirement for hippocampal CA3 NMDA receptors in associative memory recall. Science 297(5579):211–218CrossRef PubMed PubMedCentral
    59.Sweatt JD (2001) The neuronal MAP kinase cascade: a biochemical signal integration system subserving synaptic plasticity and memory. J Neurochem 76(1):1–10CrossRef PubMed
    60.Sweatt JD (2004) Mitogen-activated protein kinases in synaptic plasticity and memory. Curr Opin Neurobiol 14(3):311–317CrossRef PubMed
  • 作者单位:Wen-Yuan Wang (1)
    Li-Jie Jia (2)
    Yan Luo (2)
    Hong-Hai Zhang (3)
    Fang Cai (1)
    Hui Mao (1)
    Wei-Cai Xu (1)
    Jun-Biao Fang (1)
    Zhi-You Peng (4)
    Zheng-Wen Ma (5)
    Yan-Hong Chen (6)
    Juan Zhang (6)
    Zhen Wei (6)
    Bu-Wei Yu (2)
    Shuang-Fei Hu (1)

    1. Department of Anesthesiology, Zhejiang Provincial People’s Hospital, ShangTang Road 158, 310014, Hangzhou, China
    2. Department of Anesthesiology, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
    3. Department of Anesthesiology, Hangzhou First People’s Hospital, Nanjing Medical University, Hangzhou, China
    4. Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
    5. Department of Neurobiology, Shanghai JiaoTong University School of Medicine, Shanghai, China
    6. Department of Experimental Animal Center, Zhejiang University, Hangzhou, China
  • 刊物主题:Neurosciences; Neurobiology; Cell Biology; Neurology;
  • 出版者:Springer US
  • ISSN:1559-1182
文摘
It is well established that developmental exposure of sevoflurane (an inhalational anesthetic) is capable of inducing neuronal apoptosis and subsequent learning and memory disorders. Synaptic NMDA receptors activity plays an essential role in cell survival, while the extra-synaptic NMDA receptors activation is usually associated with cell death. However, whether synaptic or extra-synaptic NMDA receptors mediate developmental sevoflurane neurotoxicity is largely unknown. Here, we show that developmental sevoflurane treatment decreased NR2A, but increased NR2B subunit expression both in vitro and in vivo. Sevoflurane-induced neuronal apoptosis was attenuated by synaptic NMDA receptors activation or low dose of exogenous NMDA in vitro. Interestingly, these effects could be abolished by NR2A inhibitor PEAQX, but not NR2B inhibitor Ifenprodil in vitro. In contrast, activation of extra-synaptic NMDA receptors alone had no effects on sevoflurane neurotoxicity. In the scenario of extra-synaptic NMDA receptors stimulation, however, sevoflurane-induced neuronal apoptosis could be prevented by addition of Ifenprodil, but not by PEAQX in vitro. In addition, sevoflurane neurotoxicity could also be rescued by memantine, an uncompetitive antagonist for preferential blockade of extra-synaptic NMDA receptors both in vitro and in vivo. Furthermore, we found that developmental sevoflurane-induced phospho-ERK1/2 inhibition was restored by synaptic NMDA receptor activation (in vitro), low dose of NMDA (in vitro) or memantine (in vivo). And the neuroprotective role of synaptic NMDA activity was able to be reversed by MEK1/2 inhibitor U0126 in vitro. Finally, administration of memantine or NMDA significantly improved spatial learning and memory dysfunctions induced by developmental sevoflurane exposure without influence on locomotor activity. These results indicated that activation of synaptic NR2A-containing NMDA receptors, or inhibition of extra-synaptic NR2B-containing NMDA receptors contributed to the relief of sevoflurane neurotoxicity, and the ERK1/2 MAPK signaling may be involved in this process.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700