On the Hardness of LWE with Binary Error: Revisiting the Hybrid Lattice-Reduction and Meet-in-the-Middle Attack
详细信息    查看全文
  • 关键词:Learning with errors ; Lattice ; based cryptography ; Cryptanalysis ; NTRU ; Hybrid attack
  • 刊名:Lecture Notes in Computer Science
  • 出版年:2016
  • 出版时间:2016
  • 年:2016
  • 卷:9646
  • 期:1
  • 页码:24-43
  • 全文大小:377 KB
  • 参考文献:1.Albrecht, M.R., Cid, C., Faugère, J., Fitzpatrick, R., Perret, L.: Algebraic algorithms for LWE problems. In: IACR Cryptology ePrint Archive 2014, p. 1018 (2014)
    2.Albrecht, M.R., Cid, C., Faugère, J., Fitzpatrick, R., Perret, L.: On the complexity of the BKW algorithm on LWE. Des. Codes Crypt. 74(2), 325–354 (2015)MathSciNet CrossRef MATH
    3.Albrecht, M.R., Faugère, J., Fitzpatrick, R., Perret, L.: Lazy modulus switching for the BKW algorithm on LWE. In: Krawczyk [28], pp. 429–445
    4.Albrecht, M.R., Fitzpatrick, R., Göpfert, F.: On the efficacy of solving LWE by reduction to unique-SVP. In: Lee, H.-S., Han, D.-G. (eds.) ICISC 2013. LNCS, vol. 8565, pp. 293–310. Springer, Heidelberg (2014)
    5.Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with errors. J. Math. Cryptology 9(3), 169–203 (2015)MathSciNet CrossRef MATH
    6.Arora, S., Ge, R.: New algorithms for learning in presence of errors. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 403–415. Springer, Heidelberg (2011)CrossRef
    7.Babai, L.: On Lovász’ lattice reduction and the nearest lattice pointproblem. In: Mehlhorn, K. (ed.) STACS 85. LNCS, vol. 182, pp. 13–20. Springer, Berlin (1985)CrossRef
    8.Babai, L.: On Lovász’ lattice reduction and the nearest lattice point problem. Combinatorica 6(1), 1–13 (1986)MathSciNet CrossRef MATH
    9.Bai, S., Galbraith, S.D.: Lattice decoding attacks on binary LWE. In: Susilo, W., Mu, Y. (eds.) ACISP 2014. LNCS, vol. 8544, pp. 322–337. Springer, Heidelberg (2014)
    10.Bai, S., Galbraith, S.D., Li, L., Sheffield, D.: Improved exponential-time algorithms for inhomogeneous-sis. In: IACR Cryptology ePrint Archive 2014, p. 593 (2014)
    11.Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity problem, and the statistical query model. J. ACM 50(4), 506–519 (2003)MathSciNet CrossRef MATH
    12.Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from(standard) LWE. In: Ostrovsky, R. (eds.) FOCS 2011, pp. 97–106, Palm Springs, CA, USA. IEEE Computer Society , 22–25 October 2011
    13.Buchmann, J., Göpfert, F., Player, R., Wunderer, T.: On the hardness of LWE with binary error: revisiting the hybridlattice-reduction and meet-in-the-middle attack. Cryptology ePrint Archive, Report 2016/089 (2016). http://​eprint.​iacr.​org/​
    14.Canetti, R., Garay, J.A. (eds.): CRYPTO 2013, Part I. LNCS, vol. 8042. Springer, Heidelberg (2013)MATH
    15.Chen, H., Lauter, K.E., Stange, K.E.: Attacks on search RLWE. IACR Cryptology ePrint Archive 2015, p. 971 (2015)
    16.Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidelberg (2011)CrossRef
    17.Duc, A., Tramèr, F., Vaudenay, S.: Better algorithms for LWE and LWR. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 173–202. Springer, Heidelberg (2015)
    18.Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and bimodal gaussians. In: Canetti, R., Garay, J.A. (eds.) [14], pp. 40–56
    19.Eisenträger, K., Hallgren, S., Lauter, K.: Weak Instances of PLWE. In: Joux, A., Youssef, A. (eds.) SAC 2014. LNCS, vol. 8781, pp. 183–194. Springer, Heidelberg (2014)CrossRef
    20.Elias, Y., Lauter, K.E., Ozman, E., Stange, K.E.: Provably weak instances of ring-LWE. In: Gennaro, R., Robshaw, M. (eds.) [21], pp. 63–92
    21.Gennaro, R., Robshaw, M. (eds.): CRYPTO 2015. LNCS, vol. 9215. Springer, Berlin (2015)MATH
    22.Güneysu, T., Lyubashevsky, V., Pöppelmann, T.: Practical lattice-based cryptography: a signature scheme for embedded systems. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 530–547. Springer, Heidelberg (2012)CrossRef
    23.Guo, Q., Johansson, T., Stankovski, P.: Coded-BKW: solving LWE using lattice codes. In: Gennaro, R., Robshaw, M. (eds.) [21], pp. 23–42
    24.Hirschhorn, P.S., Hoffstein, J., Howgrave-Graham, N., Whyte, W.: Choosing NTRUEncrypt parameters in light of combined lattice reduction and MITM approaches. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 437–455. Springer, Heidelberg (2009)CrossRef
    25.Howgrave-Graham, N.: A hybrid lattice-reduction and meet-in-the-middle attack against NTRU. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 150–169. Springer, Heidelberg (2007)CrossRef
    26.Kannan, R.: Minkowski’s convex body theorem and integer programming. Math. Oper. Res. 12(3), 415–440 (1987)MathSciNet CrossRef MATH
    27.Kirchner, P., Fouque, P.: An improved BKW algorithm for LWE with applications to cryptography and lattices. In: Gennaro, R., Robshaw, M. (eds.) [21], pp. 43–62
    28.Krawczyk, H. (ed.): PKC 2014. LNCS, vol. 8383. Springer, Heidelberg (2014)MATH
    29.Laine, K., Lauter, K.E.: Key recovery for LWE in polynomial time. IACR Cryptology ePrint Archive 2015, p. 176 (2015)
    30.Langlois, A., Ling, S., Nguyen, K., Wang, H.: Lattice-based group signature scheme with verifier-local revocation. In: Krawczyk, H. (ed.) [28], pp. 345–361
    31.Li, S.: Concise formulas for the area and volume of a hyperspherical cap. Asian J. Math. Stat. 4(1), 66–70 (2011)MathSciNet CrossRef
    32.Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryption. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer, Heidelberg (2011)CrossRef
    33.Liu, M., Nguyen, P.Q.: Solving BDD by enumeration: an update. In: Dawson, E. (ed.) CT-RSA 2013. LNCS, vol. 7779, pp. 293–309. Springer, Heidelberg (2013)CrossRef
    34.Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. J. ACM 60(6), 43 (2013)MathSciNet CrossRef MATH
    35.Micciancio, D., Peikert, C.: Hardness of SIS and LWE with small parameters. In: Canetti, R., Garay, J.A. (eds.) [14], pp. 21–39
    36.Micciancio, D., Regev, O.: Lattice-based cryptography. Springer, Berlin (2009)CrossRef MATH
    37.Micciancio, D., Walter, M.: Practical, predictable lattice basis reduction. IACR Cryptology ePrint Archive 2015, p. 1123 (2015)
    38.Olver, F.W.: NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010)MATH
    39.Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem: extended abstract. In: Mitzenmacher, M. (eds.) STOC 2009, pp. 333–342, Bethesda, MD, USA. ACM, May 31–June 2, 2009
    40.Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. SIAM J. Comput. 40(6), 1803–1844 (2011)MathSciNet CrossRef MATH
    41.Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Gabow, H.N., Fagin, R. (eds.) Proceedings of the 37th Annual ACM Symposium on Theory of Computing, pp. 84–93, Baltimore, MD, USA. ACM, 22–24 May 2005
    42.Stein, W., et al.: Sage Mathematics Software (Version 6.3). The Sage Development Team (2014). http://​www.​sagemath.​org
  • 作者单位:Johannes Buchmann (16)
    Florian Göpfert (16)
    Rachel Player (17)
    Thomas Wunderer (16)

    16. Technische Universität Darmstadt, Darmstadt, Germany
    17. Information Security Group, Royal Holloway, University of London, Egham, UK
  • 丛书名:Progress in Cryptology ᾿AFRICACRYPT 2016
  • ISBN:978-3-319-31517-1
  • 刊物类别:Computer Science
  • 刊物主题:Artificial Intelligence and Robotics
    Computer Communication Networks
    Software Engineering
    Data Encryption
    Database Management
    Computation by Abstract Devices
    Algorithm Analysis and Problem Complexity
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1611-3349
文摘
The security of many cryptographic schemes has been based on special instances of the Learning with Errors (LWE) problem, e.g., Ring-LWE, LWE with binary secret, or LWE with ternary error. However, recent results show that some subclasses are weaker than expected. In this work we show that LWE with binary error, introduced by Micciancio and Peikert, is one such subclass. We achieve this by applying the Howgrave-Graham attack on NTRU, which is a combination of lattice techniques and a Meet-in-the-Middle approach, to this setting. We show that the attack outperforms all other currently existing algorithms for several natural parameter sets. For instance, for the parameter set \(n=256\), \(m=512\), \(q=256\), this attack on LWE with binary error only requires \(2^{85}\) operations, while the previously best attack requires \(2^{117}\) operations. We additionally present a complete and improved analysis of the attack, using analytic techniques. Finally, based on the attack, we give concrete hardness estimations that can be used to select secure parameters for schemes based on LWE with binary error.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700