A DFT study of the formation of xanthydrol motifs during electrophilic poly(aryl ether ketone) synthesis
详细信息    查看全文
  • 作者:Sigismund T. A. G. Melissen ; Vincent Tognetti…
  • 关键词:Friedel–Crafts reactions ; Density functional theory ; Poly(aryl ether ketones) ; ωB97X ; D ; Electrophilic aromatic substitution ; Stacking ; Xanthydrol ; Polymer defect ; Chain termination
  • 刊名:Journal of Molecular Modeling
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:22
  • 期:1
  • 全文大小:2,693 KB
  • 参考文献:1.Salamone JC (1999) Concise polymeric materials encyclopedia, vol 1. CRC Press, Boca Raton
    2.Rosato DV, Rosato DV, Rosato MV (2004) Plastic product material and process selection handbook. Elsevier Ltd., Oxford (UK)
    3.Johnson RN, Farnham AG, Clendinning RA, Hale WF, Merriam CN (1967) Poly(aryl ethers) by nucleophilic aromatic substitution. I. Synthesis and properties. J Polym Sci Polym Chem 5:2375–2398CrossRef
    4.Attwood TE, Dawson PC, Freeman JL, Hoy LRJ, Rose JB, Staniland PA (1981) Synthesis and properties of polyaryletherketones. Polymer 22:1096–1103CrossRef
    5.Rose JB, Staniland PA (1982) Thermoplastic aromatic polyetherketones. US Patent 4,320,224
    6.Fukawa I, Tanabe T, Dozono T (1991) Preparation of aromatic poly(ether ketones) from an aromatic dihalide and sodium carbonate. Macromolecules 24(13):3838–3844CrossRef
    7.Bonner WH (1962) Aromatic polyketones and preparation thereof
    8.Goodman I, McIntyre JE, Russell W (1964) British patent 971 227. Chem Abstr 61:14805b
    9.Brugel EG (1991) Stabilization of poly(ether ketone ketones). US Patent 4,816,556
    10.Gay FP, Brunette CM (1989) Ordered polyketones
    11.Rueda DR, Zolotukhin MG, Cagiao ME, Ania F, Dosière M, Villers D, de Abajo J (2001) On the effect of reaction conditions on morphology of aromatic poly(ether-ketone)s, PEKK. J Macromol Sci B 40:709–731CrossRef
    12.Ueda M, Sato M (1987) Macromolecules 20:2675–2678CrossRef
    13.Zolotukhin MG, Rueda DR, Balta Calleja FJ, Cagiao ME, Bruix M, Sedova EA, Gileva NG (1997) Aromatic polymers obtained by precipitation polycondensation: 4. Synthesis of poly(ether ketone ketone)s. Polymer 38:1471–1476CrossRef
    14.Braun D, Cherdron H, Rehahn M, Ritter H, Voit B (2005) Polymer synthesis: theory and practice—fundamentals, methods, experiments. Springer, Berlin (D)
    15.Friedel C, Crafts JM (1877) Sur une nouvelle méthode générale de synthèse d’hydrocarbures, d’acétones, etc. Bull Soc Chim Fr 84:1450–1454
    16.Olah GA (1963) Friedel–Crafts and related reactions, volume 1, general aspects. Friedel–Crafts and Related Reactions. Wiley Interscience, New York
    17.Olah GA (1964) Friedel–Crafts and related reactions, volume 3, acylation and related reactions. Friedel–Crafts and related reactions. Wiley Interscience, New York
    18.Eyley SC (1991) 3.1 - The aliphatic Friedel–Crafts reaction. In: Trost BM, Fleming I (eds) Comp Org Synth, vol 2. Pergamon, Oxford, pp 707–731CrossRef
    19.Heaney H (1991) 3.2 - The bimolecular aromatic Friedel–Crafts reaction. Comp Org Synth 2:733–752CrossRef
    20.Heaney H (1991) 3.3 - The intramolecular aromatic Friedel–Crafts reaction. Comp Org Synth 2:753–768CrossRef
    21.Mullins MJ, Woo EP (1987) The synthesis and properties of poly(aromatic ketones). J Macromol Sci Part C 27:313–341CrossRef
    22.Jonas A, Legras R, Devaux J (1992) PEEK oligomers: a model for the polymer physical behavior. 1. Synthesis and characterization of linear monodisperse oligomers. Macromolecules 25:5841–5850CrossRef
    23.Angelo RJ, Darms R, Wysong RD (1973) Melt stable polyketone compositions. Melt Stable Polyketone Compositions. US Patent 3,767,620
    24.Melissen STAG, Tognetti V, Dupas G, Jouanneau J, Lê G, Joubert L (2013) A DFT study of the Al2Cl6-catalyzed Friedel–Crafts acylation of phenyl aromatic compounds. J Mol Model 19:4947–4958CrossRef
    25.Olah GA, Klumpp DA (2004) Superelectrophilic solvation. Acc Chem Res 37:211–220CrossRef
    26.Olah GA, Germain A, Lin HC, Forsyth DA (1975) Electrophilic reactions at single bonds. XVIII. Indication of protosolvated de facto substituting agents in the reactions of alkanes with acetylium and nitronium ions in superacidic media. J Am Chem Soc 97:2928–2929CrossRef
    27.Defined as acids that are stronger than pure sulphuric acid
    28.Cheon CH, Yamamoto H (2011) Super Brönsted acid catalysis. Chem Commun 47:3043–3056CrossRef
    29.Castillo UJ, Zolotukhin MG, Fomina L, Nieto DR, Garza LO, Fomine S (2013) Reactions of ketones with aromatics in acid media. The effect of trifluoromethyl groups and the acidity media. A theoretical study. J Mol Model 19:793–801CrossRef
    30.Peña ER, Zolotukhin M, Fomine S (2004) Factors enhancing the reactivity of carbonyl compounds for polycondensations with aromatic hydrocarbons. A computational study. Macromolecules 37:6227–6235CrossRef
    31.Colquhoun HM, Zolotukhin MG, Khalilov LM, Dzhemilev UM (2001) Superelectrophiles in aromatic polymer chemistry. Macromolecules 34:1122–1124CrossRef
    32.Saito S, Sato Y, Ohwada T, Shudo K (1994) Friedel–Crafts-type cyclodehydration of 1,3-diphenyl-1-propanones. Kinetic evidence for the involvement of dication. J Am Chem Soc 116:2312– 2317CrossRef
    33.Olah GA, Wang Q, Neyer G (1994) Superelectrophilic Methylthiomethylation of Aromatics with Chloromethyl Methyl Sulfide. Synthesis, p. 276
    34.Tognetti V, Morell C, Ayers PW, Joubert L, Chermette H (2013) A proposal for an extended dual descriptor: a possible solution when frontier molecular orbital theory fails. Phys Chem Chem Phys 15:14465–14475CrossRef
    35.Guégan F, Mignon P, Tognetti V, Joubert L, Morell C (2014) Dual descriptor and molecular electrostatic potential: complementary tools for the study of the coordination chemistry of ambiphilic ligands. Phys Chem Chem Phys 16:15558–15569CrossRef
    36.Tognetti V, Morell C, Joubert L (2015) Quantifying electro/nucleophilicity by partitioning the dual descriptor. J Comput Chem 36:649–659CrossRef
    37.Derouane D, Harvey JN, Viehe HG (1995) Ring expansion or spirocyclisation of (phenylthiomethylene)cycloalkanes with aluminium chloride via β-thio carbocations. J Chem Soc Chem Commun, pp. 993–994
    38.Frisch MJEA, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA (2009) Gaussian 09, Revision B. 01. Gaussian, Inc., Wallingford (CT, USA)
    39.Chai J-D, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys Chem Chem Phys 10:6615CrossRef
    40.Chai J-D, Head-Gordon M (2008) Systematic optimization of long-range corrected hybrid density functionals. J Chem Phys 128:084106CrossRef
    41.Goerigk L, Grimme S (2011) A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions. Phys Chem Chem Phys 13:6670–6688CrossRef
    42.Chéron N, Jacquemin D, Fleurat-Lessard P (2012) A qualitative failure of B3LYP for textbook organic reactions. Phys Chem Chem Phys 14:7170–7175CrossRef
    43.Zhang IY, Wu J, Xu X (2010) Extending the reliability and applicability of B3LYP. Chem Commun 46:3057–3070CrossRef
    44.Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3093CrossRef
    45.Miertuš S, Scrocco E, Tomasi J (1981) Electrostatic interaction of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects. Chem Phys 55(1):117–129CrossRef
    46.Cancès E, Mennucci B, Tomasi J (1997) A new integral equation formalism for the polarizable continuum model: theoretical background and applications to isotropic and anisotropic dielectrics. J Chem Phys 107(8):3032CrossRef
    47.Li X, Frisch MJ (2006) Energy-represented direct inversion in the iterative subspace within a hybrid geometry optimization method. J Chem Theory Comput 2:835–839CrossRef
    48.Peng CY, Ayala PY, Bernhard Schlegel H, Frisch MJ (1996) Using redundant internal coordinates to optimize equilibrium geometries and transition states. J Comput Chem 17:49–56CrossRef
    49.Fukui K (1981) The path of chemical reactions - the IRC approach. Acc Chem Res 14:363–368CrossRef
    50.Gonzalez C, Bernhard Schlegel H (1989) An improved algorithm for reaction path following. J Chem Phys 90:2154CrossRef
    51.Braga AAC, Ujaque G, Maseras F (2006) A DFT study of the full catalytic cycle of the Suzuki–Miyaura cross-coupling on a model system. Organometallics 25:3647–3658CrossRef
    52.Zielinski F, Tognetti V, Joubert L (2012) Condensed descriptors for reactivity: a methodological study. Chem Phys Lett 527:67–72CrossRef
    53.Xu T, Barich DH, Torres PD, Nicholas JB, Haw JF (1997) Carbon-13 chemical shift tensors for acylium ions: a combined solid state NMR and ab initio molecular orbital study. J Am Chem Soc 119:396–405CrossRef
    54.Cassimatis D, Bonnin JP, Theophanides T (1970) Donor-acceptor interactions in Friedel–Crafts systems. Can J Chem 48:3860–3871CrossRef
    55.Csihony S, Mehdi H, Homonnay Z, Vértes A, Farkas Ö, Horváth IT (2002) In situ spectroscopic studies related to the mechanism of the Friedel–Crafts acetylation of benzene in ionic liquids using AlCl3 and FeCl3. J Chem Soc, Dalton Trans, p. 680–685
    56.Olah GA (1971) Aromatic substitution. XXVIII. Mechanism of electrophilic aromatic substitutions. Acc Chem Res 4:240–248CrossRef
    57.Olah GA, Kobayashi S, Tashiro M (1972) Aromatic substitution. XXX. Friedel–Crafts benzylation of benzene and toluene with benzyl and substituted benzyl halides. J Am Chem Soc 94:7448–7461CrossRef
    58.Peter Boer F (1968) Crystal structure of a Friedel–Crafts intermediate. Methyloxocarbonium hexafluoroantimonate. J Am Chem Soc 90:6706–6710CrossRef
    59.Chevrier B, Carpentier JML, Weiss R (1972) Synthesis of two crystalline species of the Friedel–Crafts intermediate antimony pentachloride-p-toluoyl chloride. Crystal structures of the donor–acceptor complex and of the ionic salt. J Am Chem Soc 94:5718–5723CrossRef
    60.Yamabe S, Yamazaki S (2009) A remarkable difference in the deprotonation steps of the Friedel–Crafts acylation and alkylation reactions. J Phys Org Chem 22:1094–1103CrossRef
    61.Tarakeshwar P, Kim KS (1999) A theoretical investigation of benzene- AlX3 and ethene- AlX3 (X = H, F, Cl) interactions. J Phys Chem A 103(45):9116–9124CrossRef
    62.Jasien PG (1995) The role of AlCl3 and Al2Cl6 in the catalyzed decomposition of organic halides. J Phys Chem 99(17):6502–6508CrossRef
    63.Volkov AN, Timoshkin AY, Suvorov AV (2005) Pathways of electrophilic aromatic substitution reactions catalyzed by group 13 trihalides: an ab initio study. Int J Quantum Chem 104:256–260CrossRef
    64.Volkov AN, Timoshkin AY, Suvorov AV (2004) On the importance of dimeric forms of Al and Ga trichlorides in the electrophilic aromatic substitution reactions: an ab initio study. Int J Quantum Chem 100:412–418CrossRef
    65.Chattaraj PK, Sarkar U, Elango M, Parthasarathi R, Subramanian V (2005) Electrophilicity as a Possible Descriptor of the Kinetic Behaviour. arXiv:Physics/​0509089v [Physics-Chem Phys]
    66.Osamura Y, Terada K, Kobayashi Y, Okazaki R, Ishiyama Y (1999) A molecular orbital study of the mechanism of chlorination reaction of benzene catalyzed by Lewis acid. J Mol Struct (THEOCHEM) 461–462:399–416CrossRef
    67.Gothelf AS, Hansen T, Jorgensen KA (2001) Studies on aluminium mediated asymmetric Friedel–Crafts hydroxyalkylation reactions of pyridinecarbaldehydes. J Chem Soc, Perkin Trans 1:854–860CrossRef
    68.Olah GA, Török B, Joschek JP, Bucsi I, Esteves PM, Rasul G, Surya Prakash GK (2002) Efficient chemoselective carboxylation of aromatics to arylcarboxylic acids with a superelectrophilically activated carbon dioxide- Al2Cl6/Al system. J Am Chem Soc 124:11379–11391CrossRef
    69.Riley KE, Pitoňák M, Jurečka P, Hobza P (2010) Stabilization and structure calculations for noncovalent interactions in extended molecular systems based on wave function and density functional theories. Chem Rev 110:5023–5063CrossRef
    70.Pitoňák M, Neogrády P, Rezáč J, Jurečka P, Urban M, Hobza P, Dimer B (2008) High-level wave function and density functional theory calculations. J Chem Theory Comput 4:1829–1834CrossRef
    71.Kim KS, Karthikeyan S, Jiten Singh N (2011) How different are aromatic π interactions from aliphatic π interactions and non- π stacking interactions J Chem Theory Comput 7:3471–3477CrossRef
    72.Sinnokrot MO, David Sherrill C (2006) High-accuracy quantum mechanical studies of π−π interactions in benzene dimers. J Phys Chem A 110:10656–10668CrossRef
    73.Wheeler SE, Houk KN (2008) Substituent effects in the benzene dimer are due to direct interactions of the substituents with the unsubstituted benzene. J Am Chem Soc 130:10854–10855CrossRef
    74.Bloom JWG, Wheeler SE (2011) Taking the aromaticity out of aromatic interactions. Angew Chemie Int Ed 50:7847–7849CrossRef
    75.Kozuch S, Shaik S (2011) How to conceptualize catalytic cycles? The energetic span model. Acc Chem Res 44:101– 110CrossRef
    76.Wang H-J, Wang Y-C (2014) Mechanistic exploration of the catalytic cycles for the CO oxidation by o2 over FeO1−3 application of the energetic span model
    77.Jiang Y-Y, Yu H-Z, Fu Y (2013) Mechanistic study of borylation of nitriles catalyzed by Rh-B and Ir-B complexes via C-CN bond activation. Organometallics 32:926–936CrossRef
    78.Anslyn EV, Dougherty DA (2006) Modern Physical Organic Chemistry. University Science, Sausalito (CA, USA)
  • 作者单位:Sigismund T. A. G. Melissen (1) (2) (3)
    Vincent Tognetti (1)
    Georges Dupas (1)
    Julien Jouanneau (2)
    Guillaume Lê (2)
    Laurent Joubert (1)

    1. Normandy University, COBRA UMR 6014 & FR 3038, Université de Rouen, INSA Rouen, CNRS, 1 rue Tesniére, 76821 Mont St Aignan, Cedex, France
    2. Arkema CERDATO Laboratories, Route du Rilsan, 27470, Serquigny, France
    3. Laboratoire de Chimie, UMR ENSL-CNRS 5182Université de Lyon, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, CNRS, 46 allée d’Italie, 69007, Lyon Cedex, France
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Computer Applications in Chemistry
    Biomedicine
    Molecular Medicine
    Health Informatics and Administration
    Life Sciences
    Computer Application in Life Sciences
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:0948-5023
文摘
The reaction pathway of the cyclization of 2-phenoxybenzophenone into 9-phenyl-9H-xanthen-9-ol in the presence of acid and an excess of AlCl33 was studied using density functional theory. This type of reaction is known to occur during the Friedel–Crafts polycondensation of poly(aryl ether ketones) following the undesired benzoylation of nucleophilic positions ortho- to the growing polymer’s ether groups. The formed defect acts as an undesired terminator of the polymer chain, causing severe problems in the polymer’s melt state. A branched, multistep mechanism reminiscent of the Friedel–Crafts acylation reaction is discovered; the reaction starts with the protonation of the carbonyl oxygen, followed by intramolecular electrophilic attack on the carbonyl carbon that determines the turnover frequency of the catalytic cycle and ends by deprotonation of the Wheland intermediate.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700