Nucleophilic Aromatic Substitution Between Halogenated Benzene Dopants and Nucleophiles in Atmospheric Pressure Photoionization
详细信息    查看全文
  • 作者:Tiina J. Kauppila ; Alexander Haack…
  • 关键词:Atmospheric pressure photoionization ; Dopant ; Gas ; phase ion/molecule reactions ; ipso ; substitution ; Nucleophilic aromatic substitution
  • 刊名:Journal of The American Society for Mass Spectrometry
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:27
  • 期:3
  • 页码:422-431
  • 全文大小:1,113 KB
  • 参考文献:1.Robb, D.B., Covey, T.R., Bruins, A.P.: Atmospheric pressure photoionization: an ionization method for liquid chromatography-mass spectrometry. Anal. Chem. 72, 3653–3659 (2000)CrossRef
    2.Syage, J.A., Evans, M.D., Hanold, K.A.: Photoionization Mass Spectrometry. Am. Lab. 32, 24–29 (2000)
    3.Raffaelli, A., Saba, A.: Atmospheric pressure photoionization mass spectrometry. Mass Spectrom. Rev. 22, 318–331 (2003)CrossRef
    4.Marchi, I., Rudaz, S., Veuthey, J.-L.: Atmospheric pressure photoionization for coupling liquid-chromatography to mass spectrometry: a review. Talanta 78, 1–18 (2009)CrossRef
    5.Kauppila, T.J., Syage, J.A., Benter, T.: Recent developments in atmospheric pressure photoionization-mass spectrometry. Mass Spectrom. (2015). doi:10.​1002/​mas.​21477
    6.Revelsky, I.A., Yashin, Y.S., Sobolevsky, T.G., Revelsky, A.I., Miller, B., Oriedo, V.: Electron ionization and atmospheric pressure photochemical ionization in gas chromatography–mass spectrometry analysis of amino acids. J. Mass Spectrom. 9, 497–507 (2003)
    7.McEwen, C.N.: GC/MS on an LC/MS instrument using atmospheric pressure photoionization. Int. J. Mass Spectrom. 259, 57–64 (2007)CrossRef
    8.Luosujärvi, L., Karikko, M.-M., Haapala, M., Saarela, V., Huhtala, S., Franssila, S., Kostiainen, R., Kotiaho, T., Kauppila, T.J.: Gas chromatography–mass spectrometry of polychlorinated biphenyls using atmospheric pressure chemical ionization and atmospheric pressure photoionization microchips. Rapid Commun. Mass Spectrom. 22, 425–431 (2008)CrossRef
    9.Hintikka, L., Haapala, M., Franssila, S., Kuuranne, T., Leinonen, A., Kostiainen, R.: Feasibility of gas chromatography–microchip atmospheric pressure photoionization-mass spectrometry in analysis of anabolic steroids. J. Chromatogr. A 217, 8290–8297 (2010)CrossRef
    10.Kersten, H., Derpmann, V., Barnes, I., Brockmann, K.J., O’Brien, R., Benter, T.: A novel APPI-MS setup for in situ degradation product studies of atmospherically relevant compounds: capillary atmospheric pressure photo ionization (cAPPI). J. Am. Soc. Mass Spectrom. 22, 2070–2081 (2011)CrossRef
    11.Haapala, M., Suominen, T., Kostiainen, R.: Capillary photoionization: a high sensitivity ionization method for mass spectrometry. Anal. Chem. 85, 5715–5719 (2013)CrossRef
    12.Kauppila, T.J., Kuuranne, T., Meurer, E.C., Eberlin, M.N., Kotiaho, T., Kostiainen, R.: Atmospheric pressure photoionization. The ionization mechanism and the effect of the solvent on ionization of naphthalenes. Anal. Chem. 74, 5470–5479 (2002)CrossRef
    13.Kauppila, T.J., Kersten, H., Benter, T.: The ionization mechanisms in direct and dopant-assisted atmospheric pressure photoionization and atmospheric pressure laser ionization. J. Am. Soc. Mass Spectrom. 25, 1870–1881 (2014)CrossRef
    14.Kadi, M., Davidsson, J., Tarnovsky, A.N., Rasmusson, M., Åkesson, E.: Photodissociation of aryl halides in the gas phase studied with femtosecond pump-probe spectroscopy. Chem. Phys. Lett. 350, 93–98 (2001)CrossRef
    15.Tiecco, M.: Radical ipso attack and ipso substitution in aromatic compounds. Acc. Chem. Res. 13, 51–57 (1980)CrossRef
    16.Luijten, W.C.M.M., Onkenhout, W., van Thuijl, J.: Electrophilic aromatic substitution under chemical ionization conditions. Methylamine and ammonia as reagent gases. Org. Mass Spectrom. 15, 329–330 (1980)CrossRef
    17.van Thuijl, J., Luijten, W.C.M.M., Onkenhout, W.: Elecrophilic substitution of aromatic compounds by NH4+ under chemical ionization conditions. J. Chem. Soc. Chem. Commun. 106–107 (1980)
    18.Thölmann, D., Grützmacher, H.: FT-ICR study of the reaction of externally generated ammonia radical cations with chlorobenzene. Org. Mass Spectrom. 24, 439–441 (1989)CrossRef
    19.van der Hart, W.J., Luijten, W.C.M.M., van Thuijl, J.: Ion/molecule reactions of ammonia and methylamine with chloro- and nitrobenzene. A comparison of chemical ionization and ion cyclotron resonance experiments. Org. Mass Spectrom. 15, 463–465 (1980)CrossRef
    20.Stone, J.A., Splinter, D.E., McLaurin, J., Wojtyniak, A.C.M.: The formation of the anilinium ion from the ammonium ion in the ammonia chemical ionization of substituted benzenes. Org. Mass Spectrom. 19, 375–378 (1984)CrossRef
    21.Maeyama, T., Mikami, N.: Nucleophilic substitution within the photoionized van der Waals complex: generation of C6H5NH3+ from C6H5Cl-NH3. J. Am. Chem. Soc. 110, 7238–7239 (1988)CrossRef
    22.Eggert, J., Janes, C., Wassermann, B., Brutschy, B., Baumgärtel, H.: Nucleophilic substitution reactions in mixed organic clusters after resonant two photon ionization. Berichte Bunsenges. Für Phys. Chem. 94, 1282–1287 (1990)
    23.Maeyama, T., Mikami, N.: Nucleophilic substitution within the photoionized van der Waals complex chlorobenzene-ammonia. J. Phys. Chem. 94, 6973–6977 (1990)CrossRef
    24.Brutschy, B., Eggert, J., Janes, C., Baumgartel, H.: Nucleophilic-substitution reactions in molecular clusters following photoionization. J. Phys. Chem. 95, 5041–5050 (1991)CrossRef
    25.Maeyama, T., Mikami, N.: Intracluster ion molecule reactions within the photoionized van der Waals complexes of fluorobenzene with ammonia and with water. J. Phys. Chem. 95, 7197–7204 (1991)CrossRef
    26.Riehn, C., Lahmann, C., Brutschy, B.: Role of charge transfer in nucleophilic substitution reactions in clusters of 1-fluoro-n-chlorobenzene cations with ammonia molecules. J. Phys. Chem. 96, 3626–3632 (1992)CrossRef
    27.Campbell, J.L.: Using a dual inlet atmospheric pressure ionization source as a dynamic reaction vessel. Rapid Commun. Mass Spectrom. 24, 3527–3530 (2010)CrossRef
    28.Robb, D.B., Smith, D.R., Blades, M.W.: Investigation of substituted-benzene dopants for charge exchange ionization of nonpolar compounds by atmospheric pressure photoionization. J. Am. Soc. Mass Spectrom. 19, 955–963 (2008)CrossRef
    29.Butterworth, K., Chiang, C.-T., Cunningham, B., Freindorf, M., Furlani, T.R., DeLeon, R.L., Garvey, J.F.: Reactions within fluorobenzene–ammonia heterocluster ions: experiment and theory. J. Phys. Chem. A 116, 1877–1883 (2012)CrossRef
    30.Reid, S.A., Nyambo, S., Kalume, A., Uhler, B., Karshenas, C., Muzangwa, L.: Reactive pathways in the chlorobenzene–ammonia dimer cation radical: new insights from experiment and theory. J. Phys. Chem. A 117, 12429–12437 (2013)CrossRef
    31.Kroll, K., Wissdorf, W., Kersten, H., Benter, T.: Development of a dual-mode laminar flow ion source for APPI- and APLI-GC-MS, Proceedings of the 63rd ASMS Conference on Mass Spectrometry and Allied Topics, St. Louis, MO, USA. 1–5 June 2015
    32.Gaussian 09, Revision C.01, Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian, Inc., Wallingford CT (2009)
    33.Dennington, R., Keith, T., Millam, J.: Gaussview. Semichem Inc., Shawnee Mission (2007)
    34.Lee, C., Yang, W., Parr, R.G.: Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988)CrossRef
    35.Becke, A.D.: Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993)CrossRef
    36.Feller, D.: The role of databases in support of computational chemistry calculations. J. Comput. Chem. 17, 1571–1586 (1996)CrossRef
    37.Schuchardt, K.L., Didier, B.T., Elsethagen, T., Sun, L., Gurumoorthi, V., Chase, J., Li, J., Windus, T.L.: Basis set exchange: a community database for computational sciences. J. Chem. Inf. Model. 47, 1045–1052 (2007)CrossRef
    38.Fujisawa, S., Ohno, K., Masuda, S., Harada, Y.: Penning ionization electron spectroscopy of monohalobenzenes: fluorobenzene, chlorobenzene, bromobenzene, and iodobenzene. J. Am. Chem. Soc. 108, 6505–6511 (1986)CrossRef
    39.Ochterski, J.W.: Thermochemistry in Gaussian, 2000. [Online]. Available: http://​www.​gaussian.​com/​g_​whitepap/​thermo.​htm
    40.Carroll, D.I., Dzidic, I., Horning, E.C., Stillwell, R.N.: Atmospheric pressure ionization mass spectrometry. Appl. Spectrosc. Rev. 17, 337–406 (1981)CrossRef
    41.Linstrom, P.J., Mallard, W.G. (eds.): NIST chemistry WebBook, NIST standard reference database number 69, National Institute of Standards and Technology, Gaithersburg MD, 20899, http://​webbook.​nist.​gov Retrieved 9 Sept 2014
    42.Thölmann, D., Grützmacher, H.-F.: Aromatic substitution of halobenzenes in the gas phase: a kinetic study by FT-ICR spectrometry. Chem. Phys. Lett. 163, 225–229 (1989)CrossRef
    43.Thölmann, D., Grützmacher, H.-F.: Gas phase substitution of halobenzenes by methylamine and dimethylamine via radical cations. Int. J. Mass Spectrom. Ion Process. 117, 415–440 (1992)CrossRef
    44.Luo, Y.-R.: Comprehensive handbook of chemical bond energies. CRC Press, Boca Raton (2007)CrossRef
    45.Bunnett, J.F., Garbisch, E.W., Pruitt, K.M.: The “element effect” as a criterion of mechanism in activated aromatic nucleophilic substitution reactions1,2. J. Am. Chem. Soc. 79, 385–391 (1957)CrossRef
    46.Senger, N.A., Bo, B., Cheng, Q., Keeffe, J.R., Gronert, S., Wu, W.: The element effect revisited: factors determining leaving group ability in activated nucleophilic aromatic substitution reactions. J. Org. Chem. 77, 9535–9540 (2012)CrossRef
  • 作者单位:Tiina J. Kauppila (1)
    Alexander Haack (2)
    Kai Kroll (2)
    Hendrik Kersten (2)
    Thorsten Benter (2)

    1. Faculty of Pharmacy, University of Helsinki, Helsinki, 00014, Finland
    2. Department of Physical and Theoretical Chemistry, University of Wuppertal, Wuppertal, 42119, Germany
  • 刊物主题:Analytical Chemistry; Biotechnology; Organic Chemistry; Proteomics; Bioinformatics;
  • 出版者:Springer US
  • ISSN:1879-1123
文摘
In a preceding work with dopant assisted-atmospheric pressure photoionization (DA-APPI), an abundant ion at [M + 77]+ was observed in the spectra of pyridine and quinoline with chlorobenzene dopant. This contribution aims to reveal the identity and route of formation of this species, and to systematically investigate structurally related analytes and dopants. Compounds containing N-, O-, and S-lone pairs were investigated with APPI in the presence of fluoro-, chloro-, bromo-, and iodobenzene dopants. Computational calculations on a density functional theory (DFT) level were carried out to study the reaction mechanism for pyridine and the different halobenzenes. The experimental and computational results indicated that the [M + 77]+ ion was formed by nucleophilic aromatic ipso-substitution between the halobenzene radical cation and nucleophilic analytes. The reaction was most efficient for N-heteroaromatic compounds, and it was weakened by sterical effects and enhanced by resonance stabilization. The reaction was most efficient with chloro-, bromo-, and iodobenzenes, whereas with fluorobenzene the reaction was scarcely observed. The calculated Gibbs free energies for the reaction between pyridine and the halobenzenes were shown to increase in the order I < Br < Cl < F. The reaction was found endergonic for fluorobenzene due to the strong C–F bonding, and exergonic for the other halobenzenes. For fluoro- and chlorobenzenes the reaction was shown to proceed through an intermediate state corresponding to [M + dopant]+, which was highly stable for fluorobenzene. For the bulkier bromine and iodine, this intermediate did not exist, but the halogens were shown to detach already during the approach by the nucleophile.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700