Xeroderma pigmentosum group C sensor: unprecedented recognition strategy and tight spatiotemporal regulation
详细信息    查看全文
  • 作者:Marjo-Riitta Puumalainen ; Peter Rüthemann…
  • 关键词:Aging ; Diurnal life ; DNA repair ; Genomic instability ; Skin cancer ; SUMO ; Sunburn ; Tumor suppressor ; Ubiquitin
  • 刊名:Cellular and Molecular Life Sciences (CMLS)
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:73
  • 期:3
  • 页码:547-566
  • 全文大小:7,973 KB
  • 参考文献:1.Straub KM, Meehan T, Burlingame AL, Calvin M (1977) Identification of the major adducts formed by reaction of benzo(a)pyrene diol epoxide with DNA in vitro. Proc Nat Acad Sci USA 74(12):5285–5289. doi:10.​1073/​pnas.​74.​12.​5285 CrossRef PubMed PubMedCentral
    2.Knox RJ, Lydall DA, Friedlos F, Basham C, Roberts JJ (1987) The effect of monofunctional or difunctional platinum adducts and of various other associated DNA damage on the expression of transfected DNA in mammalian cell lines sensitive or resistant to difunctional agents. Biochim Biophy Acta (BBA) Gene Structure and Expression 908(3):214–223. doi:10.​1016/​0167-4781(87)90101-1
    3.Brooks PJ, Wise DS, Berry DA, Kosmoski JV, Smerdon MJ, Somers RL, Mackie H, Spoonde AY, Ackerman EJ, Coleman K, Tarone RE, Robbins JH (2000) The oxidative DNA lesion 8,5′-(S)-cyclo-2′-deoxyadenosine is repaired by the nucleotide excision repair pathway and blocks gene expression in mammalian cells. J Biol Chem 275(29):22355–22362. doi:10.​1074/​jbc.​m002259200 CrossRef PubMed
    4.Kuraoka I, Bender C, Romieu A, Cadet J, Wood RD, Lindahl T (2000) Removal of oxygen free-radical-induced 5′,8-purine cyclodeoxynucleosides from DNA by the nucleotide excision-repair pathway in human cells. Proc Nat Acad Sci USA 97(8):3832–3837. doi:10.​1073/​pnas.​070471597 CrossRef PubMed PubMedCentral
    5.Brash DE (1988) UV mutagenic photoproducts in Escherichia coli and human cells: a molecular genetics perspective on human skin cancer. Photochem Photobiol 48(1):59–66. doi:10.​1111/​j.​1751-1097.​1988.​tb02786.​x CrossRef PubMed
    6.Brueckner F, Hennecke U, Carell T, Cramer P (2007) CPD damage recognition by transcribing RNA polymerase II. Science 315(5813):859–862. doi:10.​1126/​science.​1135400 CrossRef PubMed
    7.Lopes M, Foiani M, Sogo JM (2006) Multiple mechanisms control chromosome integrity after replication fork uncoupling and restart at irreparable UV lesions. Mol Cell 21(1):15–27. doi:10.​1016/​j.​molcel.​2005.​11.​015 CrossRef PubMed
    8.Marteijn JA, Lans H, Vermeulen W, Hoeijmakers JHJ (2014) Understanding nucleotide excision repair and its roles in cancer and ageing. Nat Rev Mol Cell Biol 15(7):465–481. doi:10.​1038/​nrm3822 CrossRef PubMed
    9.Donaldson MR, Coldiron BM (2011) No end in sight: the skin cancer epidemic continues. Semin Cutan Med Surg 30(1):3–5. doi:10.​1016/​j.​sder.​2011.​01.​002 CrossRef PubMed
    10.Usher-Smith JA, Emery J, Kassianos AP, Walter FM (2014) Risk prediction models for melanoma: a systematic review. Cancer Epidemiol Biomarkers Prev 23(8):1450–1463. doi:10.​1158/​1055-9965.​epi-14-0295 CrossRef PubMed
    11.Groisman R, Polanowska J, Kuraoka I, J-i Sawada, Saijo M, Drapkin R, Kisselev AF, Tanaka K, Nakatani Y (2003) The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage. Cell 113(3):357–367. doi:10.​1016/​s0092-8674(03)00316-7 CrossRef PubMed
    12.Sugasawa K, Okuda Y, Saijo M, Nishi R, Matsuda N, Chu G, Mori T, Iwai S, Tanaka K, Tanaka K, Hanaoka F (2005) UV-induced ubiquitylation of XPC protein mediated by UV-DDB-ubiquitin ligase complex. Cell 121(3):387–400. doi:10.​1016/​j.​cell.​2005.​02.​035 CrossRef PubMed
    13.Huang JC, Svoboda DL, Reardon JT, Sancar A (1992) Human nucleotide excision nuclease removes thymine dimers from DNA by incising the 22nd phosphodiester bond 5′ and the 6th phosphodiester bond 3′ to the photodimer. Proc Nat Acad Sci USA 89(8):3664–3668. doi:10.​1073/​pnas.​89.​8.​3664 CrossRef PubMed PubMedCentral
    14.Moggs JG, Yarema KJ, Essigmann JM, Wood RD (1996) Analysis of incision sites produced by human cell extracts and purified proteins during nucleotide excision repair of a 1,3-intrastrand d(GpTpG)-cisplatin adduct. J Biol Chem 271(12):7177–7186CrossRef PubMed
    15.Bohr V (1985) DNA repair in an active gene: removal of pyrimidine dimers from the DHFR gene of CHO cells is much more efficient than in the genome overall. Cell 40(2):359–369. doi:10.​1016/​0092-8674(85)90150-3 CrossRef PubMed
    16.Hanawalt PC, Spivak G (2008) Transcription-coupled DNA repair: two decades of progress and surprises. Nat Rev Mol Cell Biol 9(12):958–970. doi:10.​1038/​nrm2549 CrossRef PubMed
    17.Vermeulen W, Fousteri M (2013) Mammalian transcription-coupled excision repair. Cold Spring Harb Perspect Biol 5(8):a012625–a012626. doi:10.​1101/​cshperspect.​a012625 CrossRef PubMed PubMedCentral
    18.Scharer OD (2013) Nucleotide excision repair in eukaryotes. Cold Spring Harb Perspect Biol 5(10):a012609–a012609. doi:10.​1101/​cshperspect.​a012609 CrossRef PubMed PubMedCentral
    19.DiGiovanna JJ, Kraemer KH (2012) Shining a light on xeroderma pigmentosum. J Investig Dermatol 132(3):785–796. doi:10.​1038/​jid.​2011.​426 CrossRef PubMed PubMedCentral
    20.Hollander MC, Philburn RT, Patterson AD, Velasco-Miguel S, Friedberg EC, Linnoila RI, Fornace AJ (2005) Deletion of XPC leads to lung tumors in mice and is associated with early events in human lung carcinogenesis. Proc Nat Acad Sci 102(37):13200–13205. doi:10.​1073/​pnas.​0503133102 CrossRef PubMed PubMedCentral
    21.Cleaver JE, Lam ET, Revet I (2009) Disorders of nucleotide excision repair: the genetic and molecular basis of heterogeneity. Nat Rev Genet 10(11):756–768. doi:10.​1038/​nrg2663 CrossRef PubMed
    22.Masutani C, Kusumoto R, Yamada A, Dohmae N, Yokoi M, Yuasa M, Araki M, Iwai S, Takio K, Hanaoka F (1999) The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase eta. Nature 399(6737):700–704. doi:10.​1038/​21447 CrossRef PubMed
    23.Sugasawa K, Ng JMY, Masutani C, Iwai S, van der Spek PJ, Eker APM, Hanaoka F, Bootsma D, Hoeijmakers JHJ (1998) Xeroderma pigmentosum group C protein complex is the initiator of global genome nucleotide excision repair. Mol Cell 2(2):223–232. doi:10.​1016/​s1097-2765(00)80132-x CrossRef PubMed
    24.Volker M, Moné MJ, Karmakar P, van Hoffen A, Schul W, Vermeulen W, Hoeijmakers JHJ, van Driel R, van Zeeland AA, Mullenders LHF (2001) Sequential assembly of the nucleotide excision repair factors In Vivo. Mol Cell 8(1):213–224. doi:10.​1016/​s1097-2765(01)00281-7 CrossRef PubMed
    25.Ng JMY (2003) A novel regulation mechanism of DNA repair by damage-induced and RAD23-dependent stabilization of xeroderma pigmentosum group C protein. Genes Dev 17(13):1630–1645. doi:10.​1101/​gad.​260003 CrossRef PubMed PubMedCentral
    26.Araki M, Masutani C, Takemura M, Uchida A, Sugasawa K, Kondoh J, Ohkuma Y, Hanaoka F (2001) Centrosome protein centrin 2/caltractin 1 is part of the xeroderma pigmentosum group C complex that initiates global genome nucleotide excision repair. J Biol Chem 276(22):18665–18672. doi:10.​1074/​jbc.​m100855200 CrossRef PubMed
    27.Nishi R, Okuda Y, Watanabe E, Mori T, Iwai S, Masutani C, Sugasawa K, Hanaoka F (2005) Centrin 2 stimulates nucleotide excision repair by interacting with xeroderma pigmentosum group C protein. Mol Cell Biol 25(13):5664–5674. doi:10.​1128/​mcb.​25.​13.​5664-5674.​2005 CrossRef PubMed PubMedCentral
    28.Dantas TJ, Wang Y, Lalor P, Dockery P, Morrison CG (2011) Defective nucleotide excision repair with normal centrosome structures and functions in the absence of all vertebrate centrins. J Cell Biol 193(2):307–318. doi:10.​1083/​jcb.​201012093 CrossRef PubMed PubMedCentral
    29.Xie Z (2004) Roles of Rad23 protein in yeast nucleotide excision repair. Nucl Acids Res 32(20):5981–5990. doi:10.​1093/​nar/​gkh934 CrossRef PubMed PubMedCentral
    30.Krasikova YS, Rechkunova NI, Maltseva EA, Craescu CT, Petruseva IO, Lavrik OI (2012) Influence of centrin 2 on the interaction of nucleotide excision repair factors with damaged DNA. Biochemistry (Moscow) 77(4):346–353. doi:10.​1134/​s000629791204005​0 CrossRef
    31.Sugasawa K, Masutani C, Uchida A, Maekawa T, van der Spek PJ, Bootsma D, Hoeijmakers JH, Hanaoka F (1996) HHR23B, a human Rad23 homolog, stimulates XPC protein in nucleotide excision repair in vitro. Mol Cell Biol 16(9):4852–4861CrossRef PubMed PubMedCentral
    32.Bergink S, Toussaint W, Luijsterburg MS, Dinant C, Alekseev S, Hoeijmakers JHJ, Dantuma NP, Houtsmuller AB, Vermeulen W (2012) Recognition of DNA damage by XPC coincides with disruption of the XPC–RAD23 complex. J Cell Biol 196(6):681–688. doi:10.​1083/​jcb.​201107050 CrossRef PubMed PubMedCentral
    33.Fei J, Kaczmarek N, Luch A, Glas A, Carell T, Naegeli H (2011) Regulation of nucleotide excision repair by UV-DDB: prioritization of damage recognition to internucleosomal DNA. PLoS Biol 9(10):e1001183. doi:10.​1371/​journal.​pbio.​1001183 CrossRef PubMed PubMedCentral
    34.Dantas TJ, Daly OM, Conroy PC, Tomas M, Wang Y, Lalor P, Dockery P, Ferrando-May E, Morrison CG (2013) Calcium-binding capacity of centrin2 is required for linear POC5 assembly but not for nucleotide excision repair. PLoS ONE 8(7):e68487. doi:10.​1371/​journal.​pone.​0068487 CrossRef PubMed PubMedCentral
    35.Evans E, Fellows J, Coffer A, Wood RD (1997) Open complex formation around a lesion during nucleotide excision repair provides a structure for cleavage by human XPG protein. EMBO J 16(3):625–638. doi:10.​1093/​emboj/​16.​3.​625 CrossRef PubMed PubMedCentral
    36.Wakasugi M, Sancar A (1998) Assembly, subunit composition, and footprint of human DNA repair excision nuclease. Proc Nat Acad Sci USA 95(12):6669–6674. doi:10.​1073/​pnas.​95.​12.​6669 CrossRef PubMed PubMedCentral
    37.Missura M, Buterin T, Hindges R, Hübscher U, Kasparkova J, Brabec V, Naegeli H (2001) Double-check probing of DNA bending and unwinding by XPA-RPA: an architectural function in DNA repair. EMBO J 20(13):3554–3564. doi:10.​1093/​emboj/​20.​13.​3554 CrossRef PubMed PubMedCentral
    38.Staresincic L, Fagbemi AF, Enzlin JH, Gourdin AM, Wijgers N, Dunand-Sauthier I, Giglia-Mari G, Clarkson SG, Vermeulen W, Schärer OD (2009) Coordination of dual incision and repair synthesis in human nucleotide excision repair. EMBO J 28(8):1111–1120. doi:10.​1038/​emboj.​2009.​49 CrossRef PubMed PubMedCentral
    39.Ogi T, Limsirichaikul S, Overmeer RM, Volker M, Takenaka K, Cloney R, Nakazawa Y, Niimi A, Miki Y, Jaspers NG, Mullenders LHF, Yamashita S, Fousteri MI, Lehmann AR (2010) Three DNA polymerases, recruited by different mechanisms, carry out NER repair synthesis in human cells. Mol Cell 37(5):714–727. doi:10.​1016/​j.​molcel.​2010.​02.​009 CrossRef PubMed
    40.Moser J, Kool H, Giakzidis I, Caldecott K, Mullenders LHF, Fousteri MI (2007) Sealing of chromosomal DNA nicks during nucleotide excision repair requires XRCC1 and DNA ligase IIIα in a cell-cycle-specific manner. Mol Cell 27(2):311–323. doi:10.​1016/​j.​molcel.​2007.​06.​014 CrossRef PubMed
    41.Araujo SJ, Tirode F, Coin F, Pospiech H, Syvaoja JE, Stucki M, Hubscher U, Egly JM, Wood RD (2000) Nucleotide excision repair of DNA with recombinant human proteins: definition of the minimal set of factors, active forms of TFIIH, and modulation by CAK. Genes Dev 14(3):349–359PubMed PubMedCentral
    42.Masutani C, Sugasawa K, Yanagisawa J, Sonoyama T, Ui M, Enomoto T, Takio K, Tanaka K, van der Spek PJ, Bootsma D et al (1994) Purification and cloning of a nucleotide excision repair complex involving the xeroderma pigmentosum group C protein and a human homologue of yeast RAD23. EMBO J 13(8):1831–1843PubMed PubMedCentral
    43.Hey T, Lipps G, Sugasawa K, Iwai S, Hanaoka F, Krauss G (2002) The XPC–HR23B complex displays high affinity and specificity for damaged DNA in a true-equilibrium fluorescence assay. Biochemistry 41(21):6583–6587. doi:10.​1021/​bi012202t CrossRef PubMed
    44.Yasuda T, Sugasawa K, Shimizu Y, Iwai S, Shiomi T, Hanaoka F (2005) Nucleosomal structure of undamaged DNA regions suppresses the non-specific DNA binding of the XPC complex. DNA Rep 4(3):389–395. doi:10.​1016/​j.​dnarep.​2004.​10.​008 CrossRef
    45.Krasikova YS, Rechkunova NI, Maltseva EA, Pestryakov PE, Petruseva IO, Sugasawa K, Chen X, Min JH, Lavrik OI (2013) Comparative analysis of interaction of human and yeast DNA damage recognition complexes with damaged DNA in nucleotide excision repair. J Biol Chem 288(15):10936–10947. doi:10.​1074/​jbc.​M112.​444026 CrossRef PubMed PubMedCentral
    46.Maillard O, Solyom S, Naegeli H (2007) An aromatic sensor with aversion to damaged strands confers versatility to DNA Repair. PLoS Biol 5(4):e79. doi:10.​1371/​journal.​pbio.​0050079
    47.Sugasawa K, Okamoto T, Shimizu Y, Masutani C, Iwai S, Hanaoka F (2001) A multistep damage recognition mechanism for global genomic nucleotide excision repair. Genes Dev 15(5):507–521. doi:10.​1101/​gad.​866301 CrossRef PubMed PubMedCentral
    48.Krasikova YS, Rechkunova NI, Maltseva EA, Anarbaev RO, Pestryakov PE, Sugasawa K, Min JH, Lavrik OI (2013) Human and yeast DNA damage recognition complexes bind with high affinity DNA structures mimicking in size transcription bubble. J Mol Recognit 26(12):653–661. doi:10.​1002/​jmr.​2308
    49.Buterin T, Meyer C, Giese B, Naegeli H (2005) DNA quality control by conformational readout on the undamaged strand of the double helix. Chem Biol 12(8):913–922. doi:10.​1016/​j.​chembiol.​2005.​06.​011 CrossRef PubMed
    50.Min J-H, Pavletich NP (2007) Recognition of DNA damage by the Rad4 nucleotide excision repair protein. Nature 449(7162):570–575. doi:10.​1038/​nature06155 CrossRef PubMed
    51.Hanawalt PC, Haynes RH (1965) Repair replication of DNA in bacteria: irrelevance of chemical nature of base defect. Biochem Biophys Res Commun 19(4):462–467. doi:10.​1016/​0006-291x(65)90147-6 CrossRef PubMed
    52.Cleaver JE, Layher SK (1995) “If the shoe fits”: clues on structural recognition of DNA damage. Cell 80(6):825–827. doi:10.​1016/​0092-8674(95)90283-x CrossRef PubMed
    53.Bunick CG, Miller MR, Fuller BE, Fanning E, Chazin WJ (2006) Biochemical and structural domain analysis of xeroderma Pigmentosum complementation group C protein. Biochemistry 45(50):14965–14979. doi:10.​1021/​bi061370o CrossRef PubMed PubMedCentral
    54.Yang A, Miron S, Mouawad L, Duchambon P, Blouquit Y, Craescu CT (2006) Flexibility and plasticity of human centrin 2 binding to the xeroderma pigmentosum group C protein (XPC) from nuclear excision repair. Biochemistry 45(11):3653–3663. doi:10.​1021/​bi0524868 CrossRef PubMed
    55.Yokoi M, Masutani C, Maekawa T, Sugasawa K, Ohkuma Y, Hanaoka F (2000) The xeroderma pigmentosum group C protein complex XPC-HR23B plays an important role in the recruitment of transcription factor IIH to damaged DNA. J Biol Chem 275(13):9870–9875. doi:10.​1074/​jbc.​275.​13.​9870 CrossRef PubMed
    56.Uchida A, Sugasawa K, Masutani C, Dohmae N, Araki M, Yokoi M, Ohkuma Y, Hanaoka F (2002) The carboxy-terminal domain of the XPC protein plays a crucial role in nucleotide excision repair through interactions with transcription factor IIH. DNA Rep 1(6):449–461CrossRef
    57.Bernardes de Jesus BM, Bjoras M, Coin F, Egly JM (2008) Dissection of the molecular defects caused by pathogenic mutations in the DNA repair factor XPC. Mol Cell Biol 28(23):7225–7235. doi:10.​1128/​mcb.​00781-08 CrossRef PubMed PubMedCentral
    58.Lubin A, Zhang L, Chen H, White VM, Gong F (2014) A human XPC protein interactome-a resource. Int J Mol Sci 15(1):141–158. doi:10.​3390/​ijms15010141 CrossRef PubMedCentral
    59.He J, Zhu Q, Wani G, Sharma N, Han C, Qian J, Pentz K, Qe Wang, Wani AA (2014) Ubiquitin-specific protease 7 regulates nucleotide excision repair through deubiquitinating XPC protein and preventing XPC protein from undergoing ultraviolet light-induced and VCP/p97 protein-regulated proteolysis. J Biol Chem 289(39):27278–27289. doi:10.​1074/​jbc.​m114.​589812 CrossRef PubMed PubMedCentral
    60.Hoogstraten D, Bergink S, Ng JMY, Verbiest VHM, Luijsterburg MS, Geverts B, Raams A, Dinant C, Hoeijmakers JHJ, Vermeulen W, Houtsmuller AB (2008) Versatile DNA damage detection by the global genome nucleotide excision repair protein XPC. J Cell Sci 121(17):2850–2859. doi:10.​1242/​jcs.​031708 CrossRef PubMed
    61.Clement FC, Camenisch U, Fei J, Kaczmarek N, Mathieu N, Naegeli H (2010) Dynamic two-stage mechanism of versatile DNA damage recognition by xeroderma pigmentosum group C protein. Mutat Res 685(1–2):21–28. doi:10.​1016/​j.​mrfmmm.​2009.​08.​005 CrossRef PubMed
    62.Camenisch U, Träutlein D, Clement FC, Fei J, Leitenstorfer A, Ferrando-May E, Naegeli H (2009) Two-stage dynamic DNA quality check by xeroderma pigmentosum group C protein. EMBO J 28(16):2387–2399. doi:10.​1038/​emboj.​2009.​187 CrossRef PubMed PubMedCentral
    63.Chen X, Velmurugu Y, Zheng G, Park B, Shim Y, Kim Y, Liu L, Van Houten B, He C, Ansari A, Min J-H (2015) Kinetic gating mechanism of DNA damage recognition by Rad4/XPC. Nat Commun 6:5849. doi:10.​1038/​ncomms6849 CrossRef PubMed PubMedCentral
    64.Mocquet V, Kropachev K, Kolbanovskiy M, Kolbanovskiy A, Tapias A, Cai Y, Broyde S, Geacintov NE, Egly J-M (2007) The human DNA repair factor XPC-HR23B distinguishes stereoisomeric benzo[a]pyrenyl-DNA lesions. EMBO J 26(12):2923–2932. doi:10.​1038/​sj.​emboj.​7601730 CrossRef PubMed PubMedCentral
    65.Lee Y-C, Cai Y, Mu H, Broyde S, Amin S, Chen X, Min J-H, Geacintov NE (2014) The relationships between XPC binding to conformationally diverse DNA adducts and their excision by the human NER system: is there a correlation? DNA Rep 19:55–63. doi:10.​1016/​j.​dnarep.​2014.​03.​026 CrossRef
    66.Sugasawa K, J-i Akagi, Nishi R, Iwai S, Hanaoka F (2009) Two-Step recognition of DNA damage for mammalian nucleotide excision repair: directional binding of the XPC complex and DNA strand scanning. Mol Cell 36(4):642–653. doi:10.​1016/​j.​molcel.​2009.​09.​035 CrossRef PubMed
    67.Mathieu N, Kaczmarek N, Naegeli H (2010) Strand- and site-specific DNA lesion demarcation by the xeroderma pigmentosum group D helicase. Proc Nat Acad Sci USA 107(41):17545–17550. doi:10.​1073/​pnas.​1004339107 CrossRef PubMed PubMedCentral
    68.Clement FC, Kaczmarek N, Mathieu N, Tomas M, Leitenstorfer A, Ferrando-May E, Naegeli H (2011) Dissection of the xeroderma pigmentosum group C protein function by site-directed mutagenesis. Antioxid Redox Signal 14(12):2479–2490. doi:10.​1089/​ars.​2010.​3399 CrossRef PubMed
    69.Fan L, Fuss JO, Cheng QJ, Arvai AS, Hammel M, Roberts VA, Cooper PK, Tainer JA (2008) XPD helicase structures and activities: insights into the cancer and aging phenotypes from XPD mutations. Cell 133(5):789–800. doi:10.​1016/​j.​cell.​2008.​04.​030 CrossRef PubMed PubMedCentral
    70.Liu H, Rudolf J, Johnson KA, McMahon SA, Oke M, Carter L, McRobbie A-M, Brown SE, Naismith JH, White MF (2008) Structure of the DNA repair helicase XPD. Cell 133(5):801–812. doi:10.​1016/​j.​cell.​2008.​04.​029 CrossRef PubMed PubMedCentral
    71.Wolski SC, Kuper J, Hänzelmann P, Truglio JJ, Croteau DL, Houten BV, Kisker C (2008) Crystal structure of the FeS cluster–containing nucleotide excision repair helicase XPD. PLoS Biol 6(6):e149. doi:10.​1371/​journal.​pbio.​0060149 CrossRef PubMed PubMedCentral
    72.Mathieu N, Kaczmarek N, Rüthemann P, Luch A, Naegeli H (2013) DNA quality control by a lesion sensor pocket of the xeroderma pigmentosum group D helicase subunit of TFIIH. Curr Biol 23(3):204–212. doi:10.​1016/​j.​cub.​2012.​12.​032 CrossRef PubMed
    73.Shell SM, Hawkins EK, Tsai M-S, Hlaing AS, Rizzo CJ, Chazin WJ (2013) Xeroderma pigmentosum complementation group C protein (XPC) serves as a general sensor of damaged DNA. DNA Rep 12(11):947–953. doi:10.​1016/​j.​dnarep.​2013.​08.​013 CrossRef
    74.Menoni H, Hoeijmakers JHJ, Vermeulen W (2012) Nucleotide excision repair-initiating proteins bind to oxidative DNA lesions in vivo. J Cell Biol 199(7):1037–1046. doi:10.​1083/​jcb.​201205149 CrossRef PubMed PubMedCentral
    75.Miao F, Bouziane M, Dammann R, Masutani C, Hanaoka F, Pfeifer G, O’Connor TR (2000) 3-Methyladenine-DNA Glycosylase (MPG Protein) Interacts with Human RAD23 Proteins. J Biol Chem 275(37):28433–28438. doi:10.​1074/​jbc.​m001064200 CrossRef PubMed
    76.Shimizu Y, Iwai S, Hanaoka F, Sugasawa K (2003) Xeroderma pigmentosum group C protein interacts physically and functionally with thymine DNA glycosylase. EMBO J 22(1):164–173. doi:10.​1093/​emboj/​cdg016 CrossRef PubMed PubMedCentral
    77.D’Errico M, Lemma T, Calcagnile A, Santis LPD, Dogliotti E (2007) Cell type and DNA damage specific response of human skin cells to environmental agents. Mutat Res 614(1–2):37–47. doi:10.​1016/​j.​mrfmmm.​2006.​06.​009 CrossRef PubMed
    78.Melis JPM, Luijten M, Mullenders LHF, van Steeg H (2011) The role of XPC: implications in cancer and oxidative DNA damage. Mutat Res 728(3):107–117. doi:10.​1016/​j.​mrrev.​2011.​07.​001 CrossRef PubMed PubMedCentral
    79.Despras E, Pfeiffer P, Salles B, Calsou P, Kuhfittig-Kulle S, Angulo JF, Biard DSF (2007) Long-term XPC silencing reduces DNA double-strand break repair. Cancer Res 67(6):2526–2534. doi:10.​1158/​0008-5472.​can-06-3371 CrossRef PubMed
    80.Conaway JW, Conaway RC (1989) A multisubunit transcription factor essential for accurate initiation by RNA polymerase II. J Biol Chem 264(4):2357–2362PubMed
    81.Gerard M, Fischer L, Moncollin V, Chipoulet JM, Chambon P, Egly JM (1991) Purification and interaction properties of the human RNA polymerase B(II) general transcription factor BTF2. Journal Biol Chem 266(31):20940–20945
    82.Schaeffer L, Roy R, Humbert S, Moncollin V, Vermeulen W, Hoeijmakers J, Chambon P, Egly J (1993) DNA repair helicase: a component of BTF2 (TFIIH) basic transcription factor. Science 260(5104):58–63. doi:10.​1126/​science.​8465201 CrossRef PubMed
    83.Le May N, Egly J-M, Coin F (2010) True lies: the double life of the nucleotide excision repair factors in transcription and DNA repair. J Nucleic Acids 2010:1–10. doi:10.​4061/​2010/​616342 CrossRef
    84.Le May N, Mota-Fernandes D, Vélez-Cruz R, Iltis I, Biard D, Egly JM (2010) NER factors are recruited to active promoters and facilitate chromatin modification for transcription in the absence of exogenous genotoxic attack. Mol Cell 38(1):54–66. doi:10.​1016/​j.​molcel.​2010.​03.​004 CrossRef PubMed
    85.Ziani S, Nagy Z, Alekseev S, Soutoglou E, Egly JM, Coin F (2014) Sequential and ordered assembly of a large DNA repair complex on undamaged chromatin. J Cell Biol 206(5):589–598. doi:10.​1083/​jcb.​201403096 CrossRef PubMed PubMedCentral
    86.Fong Yick W, Inouye C, Yamaguchi T, Cattoglio C, Grubisic I, Tjian R (2011) A DNA repair complex functions as an Oct4/Sox2 coactivator in embryonic stem cells. Cell 147(1):120–131. doi:10.​1016/​j.​cell.​2011.​08.​038 CrossRef PubMed PubMedCentral
    87.Cattoglio C, Zhang ET, Grubisic I, Chiba K, Fong YW, Tjian R (2015) Functional and mechanistic studies of XPC DNA-repair complex as transcriptional coactivator in embryonic stem cells. Proc Natl Acad Sci USA 112(18):E2317–E2326. doi:10.​1073/​pnas.​1505569112 CrossRef PubMed PubMedCentral
    88.Ito S, Yamane M, Ohtsuka S, Niwa H (2014) The C-terminal region of Xpc is dispensable for the transcriptional activity of Oct3/4 in mouse embryonic stem cells. FEBS Lett 588(7):1128–1135. doi:10.​1016/​j.​febslet.​2014.​02.​033 CrossRef PubMed
    89.Sands AT, Abuin A, Sanchez A, Conti CJ, Bradley A (1995) High susceptibility to ultraviolet-induced carcinogenesis in mice lacking XPC. Nature 377(6545):162–165. doi:10.​1038/​377162a0 CrossRef PubMed
    90.Siede W, Eckardt-Schupp F (1986) DNA repair genes of Saccharomyces cerevisiae: complementing rad4 and rev2 mutations by plasmids which cannot be propagated in Escherichia coli. Curr Genet 11(3):205–210. doi:10.​1007/​bf00420608 CrossRef PubMed
    91.Wei S, Friedberg EC (1998) A fragment of the yeast DNA repair protein Rad4 confers toxicity to E. coli and is required for its interaction with Rad7 protein. Mutat Res 400(1–2):127–133. doi:10.​1016/​s0027-5107(98)00035-9 CrossRef PubMed
    92.Puumalainen M-R, Lessel D, Rüthemann P, Kaczmarek N, Bachmann K, Ramadan K, Naegeli H (2014) Chromatin retention of DNA damage sensors DDB2 and XPC through loss of p97 segregase causes genotoxicity. Nat Commun 5:3695. doi:10.​1038/​ncomms4695 CrossRef PubMed PubMedCentral
    93.Cam H, Balciunaite E, Blais A, Spektor A, Scarpulla RC, Young R, Kluger Y, Dynlacht BD (2004) A common set of gene regulatory networks links metabolism and growth inhibition. Mol Cell 16(3):399–411. doi:10.​1016/​j.​molcel.​2004.​09.​037 CrossRef PubMed
    94.Ming M, Shea CR, Guo X, Li X, Soltani K, Han W, He YY (2010) Regulation of global genome nucleotide excision repair by SIRT1 through xeroderma pigmentosum C. Proc Nat Acad Sci USA 107(52):22623–22628. doi:10.​1073/​pnas.​1010377108 CrossRef PubMed PubMedCentral
    95.Dominguez-Brauer C, Chen Y-J, Brauer PM, Pimkina J, Raychaudhuri P (2009) ARF stimulates XPC to trigger nucleotide excision repair by regulating the repressor complex of E2F4. EMBO Rep 10(9):1036–1042. doi:10.​1038/​embor.​2009.​139 CrossRef PubMed PubMedCentral
    96.Adimoolam S, Ford JM (2002) p53 and DNA damage-inducible expression of the xeroderma pigmentosum group C gene. Proc Nat Acad Sci USA 99(20):12985–12990. doi:10.​1073/​pnas.​202485699 CrossRef PubMed PubMedCentral
    97.Amundson SA, Patterson A, Do KT, Fornace JAJ (2002) A nucleotide excision repair master-switch: p53 regulated coordinate introduction of global genomic repair genes. Cancer Biol Ther 1(2):145–149. doi:10.​4161/​cbt.​59 CrossRef PubMed
    98.Wei C-L, Wu Q, Vega VB, Chiu KP, Ng P, Zhang T, Shahab A, Yong HC, Fu Y, Weng Z, Liu J, Zhao XD, Chew J-L, Lee YL, Kuznetsov VA, Sung W-K, Miller LD, Lim B, Liu ET, Yu Q, Ng H-H, Ruan Y (2006) A global map of p53 transcription-factor binding sites in the human genome. Cell 124(1):207–219. doi:10.​1016/​j.​cell.​2005.​10.​043 CrossRef PubMed
    99.Hastak K, Adimoolam S, Trinklein ND, Myers RM, Ford JM (2012) Identification of a functional in vivo p53 response element in the coding sequence of the xeroderma pigmentosum group C gene. Genes Cancer 3(2):131–140. doi:10.​1177/​1947601912456288​ CrossRef PubMed PubMedCentral
    100.Hartman A-R, Ford JM (2002) BRCA1 induces DNA damage recognition factors and enhances nucleotide excision repair. Nat Genet 32(1):180–184. doi:10.​1038/​ng953 CrossRef PubMed
    101.Kim JK, Soni SD, Arakali AV, Wallace JC, Alderfer JL (1995) Solution structure of a nucleic acid photoproduct of deoxyfluorouridylyl-(3′-5′)-thymidine monophosphate (d-FpT) determined by NMR and restrained molecular dynamics: structural comparison of two sequence isomer photoadducts (d-U5p5T and d-T5p5U). Nucleic Acids Res 23(10):1810–1815. doi:10.​1093/​nar/​23.​10.​1810 CrossRef PubMed PubMedCentral
    102.McAteer K, Jing Y, Kao J, Taylor JS, Kennedy MA (1998) Solution-state structure of a DNA dodecamer duplex containing a Cis-Syn thymine cyclobutane dimer, the major UV photoproduct of DNA. J Mol Biol 282(5):1013–1032. doi:10.​1006/​jmbi.​1998.​2062 CrossRef PubMed
    103.Jing Y, Taylor JS, Kao JFL (1998) Thermodynamic and base-pairing studies of matched and mismatched DNA dodecamer duplexes containing cis-syn, (6-4) and Dewar photoproducts of TT. Nucleic Acids Res 26(16):3845–3853. doi:10.​1093/​nar/​26.​16.​3845 CrossRef PubMed PubMedCentral
    104.Mitchell DL, Cleaver JE, Epstein JH (1990) Repair of Pyrimidine (6-4)pyrimidone Photoproducts in Mouse Skin. J Invest Dermatol 95(1):55–59. doi:10.​1111/​1523-1747.​ep12873312 CrossRef PubMed
    105.Gale JM, Nissen KA, Smerdon MJ (1987) UV-induced formation of pyrimidine dimers in nucleosome core DNA is strongly modulated with a period of 10.3 bases. Proc Nat Acad Sci USA 84 (19):6644-6648. doi:10.​1073/​pnas.​84.​19.​6644
    106.Gale JM, Smerdon MJ (1990) UV induced (6-4) photoproducts are distributed differently than cyclobutane dimers in nucleosomes. Photochem Photobiol 51(4):411–417. doi:10.​1111/​j.​1751-1097.​1990.​tb01732.​x CrossRef PubMed
    107.Schul W, Jans J, Rijksen YM, Klemann KH, Eker AP, de Wit J, Nikaido O, Nakajima S, Yasui A, Hoeijmakers JH, van der Horst GT (2002) Enhanced repair of cyclobutane pyrimidine dimers and improved UV resistance in photolyase transgenic mice. EMBO J 21(17):4719–4729. doi:10.​1093/​emboj/​cdf456 CrossRef PubMed PubMedCentral
    108.Garinis GA, Mitchell JR, Moorhouse MJ, Hanada K, de Waard H, Vandeputte D, Jans J, Brand K, Smid M, van der Spek PJ, Hoeijmakers JHJ, Kanaar R, van der Horst GTJ (2005) Transcriptome analysis reveals cyclobutane pyrimidine dimers as a major source of UV-induced DNA breaks. EMBO J 24(22):3952–3962. doi:10.​1038/​sj.​emboj.​7600849 CrossRef PubMed PubMedCentral
    109.Reardon JT, Sancar A (2003) Recognition and repair of the cyclobutane thymine dimer, a major cause of skin cancers, by the human excision nuclease. Genes Dev 17(20):2539–2551. doi:10.​1101/​gad.​1131003 CrossRef PubMed PubMedCentral
    110.Wittschieben BO, Iwai S, Wood RD (2005) DDB1-DDB2 (xeroderma pigmentosum group E) protein complex recognizes a cyclobutane pyrimidine dimer, mismatches, apurinic/apyrimidinic sites, and compound lesions in DNA. J Biol Chem 280(48):39982–39989. doi:10.​1074/​jbc.​m507854200 CrossRef PubMed
    111.Nichols AF, Itoh T, Graham JA, Liu W, Yamaizumi M, Linn S (2000) Human damage-specific DNA-binding protein p48. Characterization of XPE mutations and regulation following UV irradiation. J Biol Chem 275(28):21422–21428. doi:10.​1074/​jbc.​m000960200 CrossRef PubMed
    112.Kulaksiz G, Reardon JT, Sancar A (2005) Xeroderma pigmentosum complementation group E protein (XPE/DDB2): purification of various complexes of XPE and analyses of their damaged DNA binding and putative DNA repair properties. Mol Cell Biol 25(22):9784–9792. doi:10.​1128/​mcb.​25.​22.​9784-9792.​2005 CrossRef PubMed PubMedCentral
    113.Hwang BJ, Ford JM, Hanawalt PC, Chu G (1999) Expression of the p48 xeroderma pigmentosum gene is p53-dependent and is involved in global genomic repair. Proc Nat Acad Sci USA 96(2):424–428. doi:10.​1073/​pnas.​96.​2.​424 CrossRef PubMed PubMedCentral
    114.Takimoto R, MacLachlan TK, Dicker DT, Niitsu Y, Mori T, El-Deiry WS (2002) BRCA1 transcriptionally regulates damaged DNA binding protein (DDB2) in the DNA repair response following UV-irradiation. Cancer Biol Ther 1(2):177–186. doi:10.​4161/​cbt.​65 CrossRef PubMed
    115.Tang JY, Hwang BJ, Ford JM, Hanawalt PC, Chu G (2000) Xeroderma pigmentosum p48 gene enhances global genomic repair and suppresses UV-induced mutagenesis. Mol Cell 5(4):737–744. doi:10.​1016/​s1097-2765(00)80252-x CrossRef PubMed PubMedCentral
    116.Scrima A, Koníčková R, Czyzewski BK, Kawasaki Y, Jeffrey PD, Groisman R, Nakatani Y, Iwai S, Pavletich NP, Thomä NH (2008) Structural basis of UV DNA-damage recognition by the DDB1–DDB2 complex. Cell 135(7):1213–1223. doi:10.​1016/​j.​cell.​2008.​10.​045 CrossRef PubMed PubMedCentral
    117.Fischer Eric S, Scrima A, Böhm K, Matsumoto S, Lingaraju Gondichatnahalli M, Faty M, Yasuda T, Cavadini S, Wakasugi M, Hanaoka F, Iwai S, Gut H, Sugasawa K, Thomä Nicolas H (2011) The molecular basis of CRL4DDB2/CSA ubiquitin ligase architecture, targeting, and activation. Cell 147(5):1024–1039. doi:10.​1016/​j.​cell.​2011.​10.​035 CrossRef PubMed
    118.Yeh JI, Levine AS, Du S, Chinte U, Ghodke H, Wang H, Shi H, Hsieh CL, Conway JF, Van Houten B, Rapic-Otrin V (2012) Damaged DNA induced UV-damaged DNA-binding protein (UV-DDB) dimerization and its roles in chromatinized DNA repair. Proc Nat Acad Sci USA 109(41):E2737–E2746. doi:10.​1073/​pnas.​1110067109 CrossRef PubMed PubMedCentral
    119.Moser J, Volker M, Kool H, Alekseev S, Vrieling H, Yasui A, van Zeeland AA, Mullenders LHF (2005) The UV-damaged DNA binding protein mediates efficient targeting of the nucleotide excision repair complex to UV-induced photo lesions. DNA Rep 4(5):571–582. doi:10.​1016/​j.​dnarep.​2005.​01.​001 CrossRef
    120.Wakasugi M, Shimizu M, Morioka H, Linn S, Nikaido O, Matsunaga T (2001) Damaged DNA-binding protein DDB stimulates the excision of cyclobutane pyrimidine dimers in vitro in concert with XPA and replication protein A. J Biol Chem 276(18):15434–15440. doi:10.​1074/​jbc.​m011177200 CrossRef PubMed
    121.Fitch ME, Nakajima S, Yasui A, Ford JM (2003) In vivo recruitment of XPC to UV-induced cyclobutane pyrimidine dimers by the DDB2 gene product. J Biol Chem 278(47):46906–46910. doi:10.​1074/​jbc.​m307254200 CrossRef PubMed
    122.Batty D, Rapic’-Otrin V, Levine AS, Wood RD (2000) Stable binding of human XPC complex to irradiated DNA confers strong discrimination for damaged sites. J Mol Biol 300(2):275–290. doi:10.​1006/​jmbi.​2000.​3857 CrossRef PubMed
    123.Nag A, Bondar T, Shiv S, Raychaudhuri P (2001) The xeroderma pigmentosum group E gene product DDB2 is a specific target of cullin 4A in mammalian cells. Mol Cell Biol 21(20):6738–6747. doi:10.​1128/​mcb.​21.​20.​6738-6747.​2001 CrossRef PubMed PubMedCentral
    124.Kapetanaki MG, Guerrero-Santoro J, Bisi DC, Hsieh CL, Rapic-Otrin V, Levine AS (2006) The DDB1-CUL4ADDB2 ubiquitin ligase is deficient in xeroderma pigmentosum group E and targets histone H2A at UV-damaged DNA sites. Proc Nat Acad Sci USA 103(8):2588–2593. doi:10.​1073/​pnas.​0511160103 CrossRef PubMed
    125.Wang H, Zhai L, Xu J, Joo H-Y, Jackson S, Erdjument-Bromage H, Tempst P, Xiong Y, Zhang Y (2006) Histone H3 and H4 ubiquitylation by the CUL4-DDB-ROC1 ubiquitin ligase facilitates cellular response to DNA damage. Mol Cell 22(3):383–394. doi:10.​1016/​j.​molcel.​2006.​03.​035 CrossRef PubMed
    126.Guerrero-Santoro J, Kapetanaki MG, Hsieh CL, Gorbachinsky I, Levine AS, Rapic-Otrin V (2008) The cullin 4B-based UV-damaged DNA-binding protein ligase binds to UV-damaged chromatin and ubiquitinates histone H2A. Cancer Res 68(13):5014–5022. doi:10.​1158/​0008-5472.​can-07-6162 CrossRef PubMed
    127.Liu L, Lee S, Zhang J, Peters SB, Hannah J, Zhang Y, Yin Y, Koff A, Ma L, Zhou P (2009) CUL4A abrogation augments DNA damage response and protection against skin carcinogenesis. Mol Cell 34(4):451–460. doi:10.​1016/​j.​molcel.​2009.​04.​020 CrossRef PubMed PubMedCentral
    128.Poulsen SL, Hansen RK, Wagner SA, van Cuijk L, van Belle GJ, Streicher W, Wikstrom M, Choudhary C, Houtsmuller AB, Marteijn JA, Bekker-Jensen S, Mailand N (2013) RNF111/Arkadia is a SUMO-targeted ubiquitin ligase that facilitates the DNA damage response. J Cell Biol 201(6):797–807. doi:10.​1083/​jcb.​201212075 CrossRef PubMed PubMedCentral
    129.Wang QE (2005) DNA repair factor XPC is modified by SUMO-1 and ubiquitin following UV irradiation. Nucleic Acids Res 33(13):4023–4034. doi:10.​1093/​nar/​gki684 CrossRef PubMed PubMedCentral
    130.Nishi R, Alekseev S, Dinant C, Hoogstraten D, Houtsmuller AB, Hoeijmakers JHJ, Vermeulen W, Hanaoka F, Sugasawa K (2009) UV-DDB-dependent regulation of nucleotide excision repair kinetics in living cells. DNA Rep 8(6):767–776. doi:10.​1016/​j.​dnarep.​2009.​02.​004 CrossRef
    131.van Cuijk L, van Belle GJ, Turkyilmaz Y, Poulsen SL, Janssens RC, Theil AF, Sabatella M, Lans H, Mailand N, Houtsmuller AB, Vermeulen W, Marteijn JA (2015) SUMO and ubiquitin-dependent XPC exchange drives nucleotide excision repair. Nat Commun 6:7499. doi:10.​1038/​ncomms8499 CrossRef PubMed PubMedCentral
    132.Khorasanizadeh S (2004) The nucleosome. Cell 116(2):259–272. doi:10.​1016/​s0092-8674(04)00044-3 CrossRef PubMed
    133.Thoma F (2005) Repair of UV lesions in nucleosomes – intrinsic properties and remodeling. DNA Rep 4(8):855–869. doi:10.​1016/​j.​dnarep.​2005.​04.​005 CrossRef
    134.Telford DJ, Stewart BW (1989) Characteristics of chromatin release during digestion of nuclei with micrococcal nuclease: preferential solubilization of nascent rna at low enzyme concentration. Int J Biochem 21(11):1235–1240. doi:10.​1016/​0020-711x(89)90009-8 CrossRef PubMed
    135.Reardon JT, Nichols AF, Keeney S, Smith CA, Taylor JS, Linn S, Sancar A (1993) Comparative analysis of binding of human damaged DNA-binding protein (XPE) and Escherichia coli damage recognition protein (UvrA) to the major ultraviolet photoproducts: t[c, s]T, T[t, s]T, T[6-4]T, and T[Dewar]T. J Biol Chem 268(28):21301–21308PubMed
    136.Solimando L, Luijsterburg MS, Vecchio L, Vermeulen W, van Driel R, Fakan S (2008) Spatial organization of nucleotide excision repair proteins after UV-induced DNA damage in the human cell nucleus. J Cell Sci 122(1):83–91. doi:10.​1242/​jcs.​031062 CrossRef PubMed
    137.Yang Y, Kitagaki J, Dai RM, Tsai YC, Lorick KL, Ludwig RL, Pierre SA, Jensen JP, Davydov IV, Oberoi P, Li CCH, Kenten JH, Beutler JA, Vousden KH, Weissman AM (2007) Inhibitors of ubiquitin-activating enzyme (E1), a new class of potential cancer therapeutics. Cancer Res 67(19):9472–9481. doi:10.​1158/​0008-5472.​can-07-0568 CrossRef PubMed
    138.Ura K, Araki M, Saeki H, Masutani C, Ito T, Iwai S, Mizukoshi T, Kaneda Y, Hanaoka F (2001) ATP-dependent chromatin remodeling facilitates nucleotide excision repair of UV-induced DNA lesions in synthetic dinucleosomes. EMBO J 20(8):2004–2014. doi:10.​1093/​emboj/​20.​8.​2004 CrossRef PubMed PubMedCentral
    139.Pines A, Vrouwe MG, Marteijn JA, Typas D, Luijsterburg MS, Cansoy M, Hensbergen P, Deelder A, de Groot A, Matsumoto S, Sugasawa K, Thoma N, Vermeulen W, Vrieling H, Mullenders L (2012) PARP1 promotes nucleotide excision repair through DDB2 stabilization and recruitment of ALC1. J Cell Biol 199(2):235–249. doi:10.​1083/​jcb.​201112132 CrossRef PubMed PubMedCentral
    140.Robu M, Shah RG, Petitclerc N, Brind’Amour J, Kandan-Kulangara F, Shah GM (2013) Role of poly(ADP-ribose) polymerase-1 in the removal of UV-induced DNA lesions by nucleotide excision repair. Proc Nat Acad Sci 110(5):1658–1663. doi:10.​1073/​pnas.​1209507110 CrossRef PubMed PubMedCentral
    141.Datta A, Bagchi S, Nag A, Shiyanov P, Adami GR, Yoon T, Raychaudhuri P (2001) The p48 subunit of the damaged-DNA binding protein DDB associates with the CBP/p300 family of histone acetyltransferase. Mutat Res 486(2):89–97. doi:10.​1016/​s0921-8777(01)00082-9 CrossRef PubMed
    142.Martinez E, Palhan VB, Tjernberg A, Lymar ES, Gamper AM, Kundu TK, Chait BT, Roeder RG (2001) Human STAGA complex is a chromatin-acetylating transcription coactivator that interacts with pre-mRNA splicing and DNA damage-binding factors in vivo. Mol Cell Biol 21(20):6782–6795. doi:10.​1128/​mcb.​21.​20.​6782-6795.​2001 CrossRef PubMed PubMedCentral
    143.Rapic-Otrin V (2002) Sequential binding of UV DNA damage binding factor and degradation of the p48 subunit as early events after UV irradiation. Nucleic Acids Res 30(11):2588–2598. doi:10.​1093/​nar/​30.​11.​2588 CrossRef PubMed
    144.Rouiller I, Butel VM, Latterich M, Milligan RA, Wilson-Kubalek EM (2000) A major conformational change in p97 AAA ATPase upon ATP binding. Mol Cell 6(6):1485–1490. doi:10.​1016/​s1097-2765(00)00144-1 CrossRef PubMed
    145.Zhang X, Shaw A, Bates PA, Newman RH, Gowen B, Orlova E, Gorman MA, Kondo H, Dokurno P, Lally J, Leonard G, Meyer H, van Heel M, Freemont PS (2000) Structure of the AAA ATPase p97. Mol Cell 6(6):1473–1484. doi:10.​1016/​s1097-2765(00)00143-x CrossRef PubMed
    146.Meyer HH, Shorter JG, Seemann J, Pappin D, Warren G (2000) A complex of mammalian Ufd1 and Npl4 links the AAA-ATPase, p97, to ubiquitin and nuclear transport pathways. EMBO J 19(10):2181–2192. doi:10.​1093/​emboj/​19.​10.​2181 CrossRef PubMed PubMedCentral
    147.Hänzelmann P, Buchberger A, Schindelin H (2011) Hierarchical binding of cofactors to the AAA ATPase p97. Structure 19(6):833–843. doi:10.​1016/​j.​str.​2011.​03.​018 CrossRef PubMed
    148.Ye Y, Meyer HH, Rapaport TA (2003) Function of the p97–Ufd1–Npl4 complex in retrotranslocation from the ER to the cytosol: dual recognition of nonubiquitinated polypeptide segments and polyubiquitin chains. J Cell Biol 162(1):71–84. doi:10.​1083/​jcb.​200302169 CrossRef PubMed PubMedCentral
    149.Sancar A (2003) Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors. Chem Rev 103(6):2203–2238. doi:10.​1021/​cr0204348 CrossRef PubMed
    150.Weber S (2005) Light-driven enzymatic catalysis of DNA repair: a review of recent biophysical studies on photolyase. Biochim Biophys Acta (BBA) -. Bioenergetics 1707(1):1–23. doi:10.​1016/​j.​bbabio.​2004.​02.​010 CrossRef
    151.Essen LO, Klar T (2006) Light-driven DNA repair by photolyases. Cell Mol Life Sci 63(11):1266–1277. doi:10.​1007/​s00018-005-5447-y CrossRef PubMed
    152.Kuper J, Wolski SC, Michels G, Kisker C (2011) Functional and structural studies of the nucleotide excision repair helicase XPD suggest a polarity for DNA translocation. EMBO J 31(2):494–502. doi:10.​1038/​emboj.​2011.​374 CrossRef PubMed PubMedCentral
    153.Büttner K, Nehring S, Hopfner K-P (2007) Structural basis for DNA duplex separation by a superfamily-2 helicase. Nat Struct Mol Biol 14(7):647–652. doi:10.​1038/​nsmb1246 CrossRef PubMed
  • 作者单位:Marjo-Riitta Puumalainen (1) (2)
    Peter Rüthemann (1)
    Jun-Hyun Min (3)
    Hanspeter Naegeli (1)

    1. Institute of Pharmacology and Toxicology, University of Zürich-Vetsuisse, 8057, Zurich, Switzerland
    2. Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
    3. Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Cell Biology
    Biomedicine
    Life Sciences
    Biochemistry
  • 出版者:Birkh盲user Basel
  • ISSN:1420-9071
文摘
The cellular defense system known as global-genome nucleotide excision repair (GG-NER) safeguards genome stability by eliminating a plethora of structurally unrelated DNA adducts inflicted by chemical carcinogens, ultraviolet (UV) radiation or endogenous metabolic by-products. Xeroderma pigmentosum group C (XPC) protein provides the promiscuous damage sensor that initiates this versatile NER reaction through the sequential recruitment of DNA helicases and endonucleases, which in turn recognize and excise insulting base adducts. As a DNA damage sensor, XPC protein is very unique in that it (a) displays an extremely wide substrate range, (b) localizes DNA lesions by an entirely indirect readout strategy, (c) recruits not only NER factors but also multiple repair players, (d) interacts avidly with undamaged DNA, (e) also interrogates nucleosome-wrapped DNA irrespective of chromatin compaction and (f) additionally functions beyond repair as a co-activator of RNA polymerase II-mediated transcription. Many recent reports highlighted the complexity of a post-translational circuit that uses polypeptide modifiers to regulate the spatiotemporal activity of this multiuse sensor during the UV damage response in human skin. A newly emerging concept is that stringent regulation of the diverse XPC functions is needed to prioritize DNA repair while avoiding the futile processing of undamaged genes or silent genomic sequences. Keywords Aging Diurnal life DNA repair Genomic instability Skin cancer SUMO Sunburn Tumor suppressor Ubiquitin

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700