Application of Polymath Chemical Equilibrium Simulation Model for Struvite Precipitation in Soils
详细信息    查看全文
  • 作者:Michael K. Miyittah (14) miyittah@ufl.edu
    Sachin Gadekar (2)
    Pratap Pullammanappallil (2)
    Craig D. Stanley (1)
    Jean-Claude Bonzongo (3)
    Jack E. Rechcigl (1)
  • 关键词:Struvite &#8211 ; Manure ; impacted soil &#8211 ; Phosphorus &#8211 ; Chemical equilibrium modeling
  • 刊名:Water, Air, and Soil Pollution
  • 出版年:2012
  • 出版时间:June 2012
  • 年:2012
  • 卷:223
  • 期:5
  • 页码:1995-2005
  • 全文大小:192.6 KB
  • 参考文献:1. Agyin-Birikorang, S., O’Connor, G. A., & Bonzongo, J.-C. (2009). Modeling solid phase control of solubility of drinking water treatment residuals-immobilized phosphorus in soils. Communications in Soil Science and Plant Analysis, 40(11), 1747–1769.
    2. Arias, M. J., Da Silva-Carballal, L., Garcia-Rio, J., Mejuto, & Nunez, A. (2006). Retention of phosphorus by iron and aluminum oxide-coated quartz particles. Journal of Colloid and Interface Science, 295(1), 65–70.
    3. Bhuiyan, M. I. H., Mavinic, D. S., & Beckie, R. D. (2009). Dissolution kinetics of struvite pellets grown in a pilot-scale crystallizer. Canadian Journal of Civil Engineering, 36(4), 550–558.
    4. Bohn, H. L., & Bohn, R. K. (1987). Solid activities of trace elements in soils. Soil Science, 143(6), 398–403.
    5. Bouropoulos, N. Ch., & Koutsoukos, P. G. (2000). Spontaneous precipitation of struvite from aqueous solutions. Journal of Crystal Growth, 213(3–4), 381–388.
    6. Celen, I., Buchanan, J. R., Burns, R. T., Robison, R. B., & Raman, D. R. (2007). Using chemical equilibrium model to predict amendments required to precipitate phosphorus as struvite in liquid swine manure. Water Research, 41(8), 1689–1696.
    7. Chang, A. C., Page, A. L., Sutherland, F. H., & Grgurevic, E. (1983). Fractionation of phosphorus in sludge affected soils. Journal of Environmental Quality, 12(2), 286–290.
    8. Cucarella, V., & Renman, G. (2009). Phosphorus sorption capacity of filter materials used for on-site wastewater treatment determined in batch experiments—a comparative study. Journal of Environmental Quality, 38(2), 381–392.
    9. Dayton, E. A., & Basta, N. T. (2005). A method for determining the phosphorus sorption capacity and amorphous aluminum of aluminum-based drinking water treatment residuals. Journal of Environmental Quality, 34(3), 1112–1118.
    10. Dayton, E. A., Basta, N. T., Jakober, C. A., & Hattey, J. A. (2003). Using treatment residuals to reduce phosphorus in agricultural runoff. Journal of American Water Works Association, 95(4), 151–158.
    11. Gadekar, S., & Pullammanappallil, P. (2009). Validation and applications of chemical equilibrium model for struvite precipitation. Environmental Modeling and Assessment, 15(3), 201–209. doi:10.1007/s10666-009-9193-7.
    12. Grubb, D. G., Guimaraes, M. S., & Valencia, R. (2000). Phosphate immobilization using an acidic type F fly ash. Journal of Hazardous Materials, 76(2–3), 217–236.
    13. G眉ng枚r, K., & Karthikeyan, K. G. (2005). Probable phosphorus solid phases and their stability in anaerobically digested dairy manure. Transactions of the ASABE, 48(4), 1509–1520.
    14. G眉ng枚r, K., J眉rgensen, A., & Karthikeyan, K. G. (2007). Determination of phosphorus speciation of dairy manure using XRD and XANES spectroscopy. Journal of Environmental Quality, 36(6), 1856–1863.
    15. Hieltjes, A. H. M., & Lijklema, L. (1980). Fractionation of inorganic phosphates in calcareous sediments. Journal of Environmental Quality, 9(3), 405–407.
    16. Josan, M. S., Nair, V. D., Harris, W. G., & Herrera, D. (2005). Associated release of magnesium and phosphorus from active and abandoned dairy soils. Journal of Environmental Quality, 34(1), 184–191.
    17. Kennedy, V. H., Rowland, A. P., & Parrington, J. (1994). Quality assurance for soil nutrient analysis: A case study. Communications in Soil Science and Plant Analysis, 25(9), 1605–1627.
    18. Kristell, S. C., Le, E., Valsami-Jones, P., Hobbs, & Parsons, S. A. (2005). Impact of calcium on struvite crystal size, shape and purity. Journal of Crystal Growth, 283(3–4), 514–522.
    19. Lindsay, W. L. (2001). Chemical equilibria in soils. Caldwell, NJ, USA: Blackburn Press.
    20. Makris, K. C., & O’Connor, G. A. (2007). In D. Sakar, R. Datta, & R. Hannigan (Eds.), Currents perspectives in environmental geochemistry. Denver, CO, USA: Geological Society of America Press.
    21. Miyittah, M. K., Stanley, C. D., Mackowiak, C., & Rechcigl, J. E. (2011). Developing a remediation strategy for phosphorus immobilization: Effect of co-blending Al-residual and Ca-Mg amendments in a manure-impacted spodosol. Soil and Sediment Contamination: An International Journal, 20(4), 337–352.
    22. Moore, P. A., Daniel, T. C., & Edwards, D. R. (1999). Reducing phosphorous runoff and improving poultry production with alum. Poultry Science, 78(5), 692–698.
    23. Moore, P. A., & Miller, D. M. (1994). Decreased phosphorus solubility in poultry litter with aluminum, calcium and iron amendments. Journal of Environmental Quality, 23(2), 325–330.
    24. Nair, V. D., Graetz, D. A., & Portier, K. M. (1995). Forms of phosphorus in soil profiles from dairies of South Florida. Soil Science Society of America Journal, 59(5), 1244–1249.
    25. Rabenhorst, M. C. (2009). Making soil oxidation-reduction potential measurements using multimeters. Soil Science Society of America Journal, 73(6), 2198–2201.
    26. Ruttenberg, K. C. (1992). Development of a sequential extraction method for different forms of phosphorus in marine sediments. Limnology and Oceanography, 37(7), 1460–1482.
    27. Sharpley, A. N., McDowell, R. W., & Kleinman, P. J. A. (2004). Amounts, forms and solubility of phosphorus in soils receiving manure. Soil Science Society of America Journal, 68(6), 2048–2057.
    28. Silveira, M. L., Miyittah, M. K., & O’Connor, G. A. (2006). Phosphorus release from a manure-impacted spodosol: Effects of a water treatment residual. Journal of Environmental Quality, 35(2), 529–541.
    29. Stumm, W., & Morgan, J. J. (1996). Aquatic chemistry: Chemical equilibria and rates in natural waters (3rd ed.). New York: Wiley.
    30. Toor, G. S., Hunger, S., Peak, J. D., Sims, J. T., & Sparks, D. L. (2006). In D. L. Sparks (Ed.), Advances in agronomy vol. 89 (pp. 1–72). Boston: Academic Press.
    31. Ueno, Y., & Fujii, M. (2001). Three years operating experience selling recovered struvite from full scale plant. Environmental Technology, 22(11), 1373–1381.
    32. USEPA. (1996). Acid digestion of sediments, sludges and soils. Cincinnati, OH: USEPA. [Online]. http://www.epa.gov/epaoswer/hazwaste/test/pdfs/3050b.pdf. Accessed 6 December 2009.
    33. USEPA. (2000). National water quality inventory 2000 report. Washington, DC: USEPA. http://www.epa.gov/305b/2000report/. Accessed 22nd July 2009.
    34. Visual Minteq. (2009). Visual Minteq version 2.61. http://www.lwr.kth.se/English/Oursoftware/Vminteq/index.html. Accessed 6 September 2009.
    35. Willmott, C. J. (1982). Some comments on the evaluation of model performance. Bulletin of the American Meteorological Society, 63(11), 1309–1313.
    36. Zhu, C., & Anderson, G. (2002). Environmental applications of geochemical modeling. Cambridge: Cambridge University Press.
  • 作者单位:1. Soil and Water Science Department, University of Florida, IFAS, Gulf Coast Research and Education Center, Wimauma, FL 33598, USA2. Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, USA3. Department of Environmental Engineering Sciences, University of Florida, Black Hall, P.O. Box, 116450, Gainesville, FL 32611, USA4. Center for Environmental and Human Toxicology, University of Florida, P.O. Box 110885, Gainesville, FL 32611, USA
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Environment
    Atmospheric Protection, Air Quality Control and Air Pollution
    Waste Water Technology, Water Pollution Control, Water Management and Aquatic Pollution
    Terrestrial Pollution
    Hydrogeology
  • 出版者:Springer Netherlands
  • ISSN:1573-2932
文摘
A new speciation model developed and implemented in Polymath was found to be successful in predicting struvite precipitation in soils. Struvite (NH4MgPO4) has been identified as a mineral for the recovery of nitrogen (N) and phosphorus (P). Predicting struvite precipitation potential in soil is important for optimal quantification of nutrient species. Polymath and Visual Minteq models were used for prediction of several solid phases in the soil. One approach to immobilize P for solid-phase formation is by co-blending. Immobilization was achieved through the blending of an Al-based water treatment residual (Al-WTR) and with Ca–Mg-based materials [slag and magnesium oxide (MgO)]. The results suggest that Polymath model revealed solid Phases of dicalcium phosphate pentahydrate (DCPP), magnesium hydroxide (MHO), magnesium orthophosphate (v) docosahydrate (MP22), magnesium orthophosphate (v) octahydrate (MP8), and struvite, which were lacking in the modeling from Visual Minteq. Residual leachate from the co-blended amendments; Soil+WTR+Slag, Soil+WTR+MgO, Soil+MgO, Soil+Slag, Soil+WTR, and the control (without amendment) had struvite of 353, 199, 119, 90, 37, and 12 mg l-1, respectively. This implies that struvite, a phosphate mineral can be precipitated in the soil and could be released as nutrients for plant uptake. Struvite precipitation in soil and for reuse may reduce cost and may be a safe practice for sustainable environmental nutrient management.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700