CsrA impacts survival of Yersinia enterocolitica by affecting a myriad of physiological activities
详细信息    查看全文
  • 作者:Karen LeGrand (1) (2)
    Shane Petersen (2)
    Yan Zheng (2) (3)
    Kang K Liu (2)
    Gulustan Ozturk (2)
    Jing-Yu Chen (2) (4)
    Glenn M Young (1) (2)

    1. Microbiology Graduate Group
    ; University of California ; Davis ; CA ; USA
    2. Department of Food Science and Technology
    ; University of California ; Davis ; Davis ; CA ; USA
    3. College of Food Science
    ; Shenyang Agricultural University ; Shenyang ; PR China
    4. College of Food Science and Nutritional Engineering
    ; China Agricultural University ; Beijing ; China
  • 关键词:Yersinia ; CsrA ; Csr system ; Motility ; Salt sensitivity ; Antibiotic sensitivity ; Temperature sensitivity ; Psychrotroph ; Mutant selection
  • 刊名:BMC Microbiology
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:15
  • 期:1
  • 全文大小:820 KB
  • 参考文献:1. Young, BM, Young, GM (2002) YplA is exported by the Ysc, Ysa, and flagellar type III secretion systems of Yersinia enterocolitica. J Bacteriol 184: pp. 1324-34 CrossRef
    2. Schmiel, DH, Young, GM, Miller, VL (2000) The Yersinia enterocolitica phospholipase gene yplA is part of the flagellar regulon. J Bacteriol 182: pp. 2314-20 CrossRef
    3. Petersen, S, Young, GM (2002) Essential role for cyclic AMP and its receptor protein in Yersinia enterocolitica virulence. Infect Immun 70: pp. 3665-72 CrossRef
    4. Young, GM, Schmiel, DH, Miller, VL (1999) A new pathway for the secretion of virulence factors by bacteria: the flagellar export apparatus functions as a protein-secretion system. Proc Natl Acad Sci 96: pp. 6456-61 CrossRef
    5. Romeo, T, Vakulskas, CA, Babitzke, P (2012) Post-transcriptional regulation on a global scale: form and function of Csr/Rsm systems. Environ Microbiol 15: pp. 313-24 CrossRef
    6. Romeo, T (1998) Global regulation by the small RNA-binding protein CsrA and the non-coding RNA molecule CsrB. Mol Microbiol 29: pp. 1321-30 CrossRef
    7. Liu MY, Gui G, Wei B, Preston JF, Oakford L, Y眉ksel 脺, et al. The RNA molecule CsrB binds to the global regulatory protein CsrA and antagonizes its activity in / Escherichia coli. J Biol Chem. 1997;272:17502鈥?0.
    8. Weilbacher T, Suzuki K, Dubey AK, Wang X, Gudapaty S, Morozov I, et al. A novel sRNA component of the carbon storage regulatory system of / Escherichia coli. Mol Microbiol. 2003;48:657鈥?0.
    9. Suzuki, K, Babitzke, P, Kushner, SR, Romeo, T (2006) Identification of a novel regulatory protein (CsrD) that targets the global regulatory RNAs CsrB and CsrC for degradation by RNase E. Genes Dev 20: pp. 2605-17 CrossRef
    10. Mercante, J, Suzuki, K, Cheng, X, Babitzke, P, Romeo, T (2006) Comprehensive Alanine-scanning Mutagenesis of Escherichia coli CsrA Defines Two Subdomains of Critical Functional Importance. J Biol Chem 281: pp. 31832-42 CrossRef
    11. Guti茅rrez P, Li Y, Osborne MJ, Pomerantseva E, Liu Q, Gehring K. Solution structure of the carbon storage regulator protein CsrA from / Escherichia coli. J Bacteriol. 2005;187:3496鈥?01.
    12. Heeb S, Kuehne SA, Bycroft M, Crivii S, Allen MD, Haas D, et al. Functional analysis of the post-transcriptional regulator RsmA reveals a novel RNA-binding site. J Mol Biol. 2006;355:1026鈥?6.
    13. Kapatral, V, Olson, JW, Pepe, JC, Miller, VL, Minnich, SA (1996) Temperature-dependent regulation of Yersinia enterocolitica Class III flagellar genes. Mol Microbiol 19: pp. 1061-71 CrossRef
    14. Iriarte, M, Stainier, I, Mikulskis, AV, Cornelis, GR (1995) The fliA gene encoding sigma 28 in Yersinia enterocolitica. J Bacteriol 177: pp. 2299-304
    15. Bartlett DH, Frantz BB, Matsumura P. Flagellar transcriptional activators FlbB and FlaI: gene sequences and 5' consensus sequences of operons under FlbB and FlaI control. J Bacteriol. 1988;170:1575鈥?1.
    16. Liu, X, Matsumura, P (1994) The FlhD/FlhC complex, a transcriptional activator of the Escherichia coli flagellar class II operons. J Bacteriol 176: pp. 7345-51
    17. Young, GM, Smith, MJ, Minnich, SA, Miller, VL (1999) The Yersinia enterocolitica motility master regulatory operon, flhDC, is required for flagellin production, swimming motility, and swarming motility. J Bacteriol 181: pp. 2823-33
    18. Lawhon, SD, Frye, JG, Suyemoto, M, Porwollik, S, McClelland, M, Altier, C (2003) Global regulation by CsrA in Salmonella Typhimurium. Mol Microbiol 48: pp. 1633-45 CrossRef
    19. Wei, BL, Brun-Zinkernagel, AM, Simecka, JW, Pr眉脽, BM, Babitzke, P, Romeo, T (2001) Positive regulation of motility and flhDC expression by the RNA-binding protein CsrA of Escherichia coli. Mol Microbiol 40: pp. 245-56 CrossRef
    20. Heroven, AK, B枚hme, K, Rohde, M, Dersch, P (2008) A Csr-type regulatory system, including small non-coding RNAs, regulates the global virulence regulator RovA of Yersinia pseudotuberculosis through RovM. Mol Microbiol 68: pp. 1179-95 CrossRef
    21. Jonas, K, Edwards, AN, Ahmad, I, Romeo, T, R枚mling, U, Melefors, 脰 (2010) Complex regulatory network encompassing the Csr, c-di-GMP and motility systems of Salmonella Typhimurium. Environ Microbiol 12: pp. 524-40 CrossRef
    22. Yakhnin AV, Baker CS, Vakulskas CA, Yakhnin H, Berezin I, Romeo T, et al. CsrA activates / flhDC expression by protecting / flhDC mRNA from RNase E-mediated cleavage. Mol Microbiol. 2013;87:851鈥?6.
    23. Mart铆nez LC, Yakhnin H, Camacho MI, Georgellis D, Babitzke P, Puente JL, et al. Integration of a complex regulatory cascade involving the SirA/BarA and Csr global regulatory systems that controls expression of the / Salmonella SPI-1 and SPI-2 virulence regulons through HilD. Mol Microbiol. 2011;80:1637鈥?6.
    24. Heroven, AK, Dersch, P (2006) RovM, a novel LysR-type regulator of the virulence activator gene rovA, controls cell invasion, virulence and motility of Yersinia pseudotuberculosis. Mol Microbiol 62: pp. 1469-83 CrossRef
    25. Chatterjee, A, Cui, Y, Chakrabarty, P, Chatterjee, AK (2010) Regulation of motility in Erwinia carotovora subsp. carotovora: quorum-sensing signal controls FlhDC, the global regulator of flagellar and exoprotein genes, by modulating the production of RsmA, an RNA-binding protein. Mol Plant Microbe Interact 23: pp. 1316-23 CrossRef
    26. Barnard FM, Loughlin MF, Fainberg HP, Messenger MP, Ussery DW, Williams P, et al. Global regulation of virulence and the stress response by CsrA in the highly adapted human gastric pathogen / Helicobacter pylori. Mol Microbiol. 2004;51:15鈥?2.
    27. Suzuki K, Wang X, Weilbacher T, Pernestig AK, Melefors 脰, Georgellis D, et al. Regulatory circuitry of the CsrA/CsrB and BarA/UvrY systems of / Escherichia coli. J Bacteriol. 2002;184:5130鈥?0.
    28. Romeo T (Ed). Bacterial biofilms. In: Current topics in microbiology and immunology. 2008, 322. 1-293.
    29. Babitzke, P, Romeo, T (2007) CsrB sRNA family: sequestration of RNA-binding regulatory proteins. Curr Opin Microbiol 10: pp. 156-63 CrossRef
    30. Mondrag贸n V, Franco B, Jonas K, Suzuki K, Romeo T, Melefors 脰, et al. pH-dependent activation of the BarA-UvrY two-component system in / Escherichia coli. J Bacteriol. 2006;188:8303鈥?.
    31. Romeo, T, Gong, M, Liu, MY, Brun-Zinkernagel, AM (1993) Identification and molecular characterization of csrA, a pleiotropic gene from Escherichia coli that affects glycogen biosynthesis, gluconeogenesis, cell size, and surface properties. J Bacteriol 175: pp. 4744-55
    32. Timmermans, J, Melderen, L (2009) Conditional essentiality of the csrA Gene in Escherichia coli. J Bacteriol 191: pp. 1722-4 CrossRef
    33. Altier, C, Suyemoto, M, Lawhon, SD (2000) Regulation of Salmonella enterica Serovar Typhimurium invasion genes by csrA. Infect Immun 68: pp. 6790-7 CrossRef
    34. Pessi G, Williams F, Hindle Z, Heurlier K, Holden MTG, C谩mara M, et al. The global posttranscriptional regulator RsmA modulates production of virulence determinants and N-Acylhomoserine lactones in / Pseudomonas aeruginosa. J Bacteriol. 2001;183:6676鈥?3.
    35. Stanisich, VA, Holloway, BW (1972) A mutant sex factor of Pseudomonas aeruginosa. Genet Res 19: pp. 91-108 CrossRef
    36. Jay, JM, Loessner, MJ, Golden, DA (2005) Protection of foods with low-temperatures, and characteristics of psychrotrophic microorganisms. Modern food microbiology, food science text series. Springer, New York, pp. 395-413
    37. Wouters, JA, Rombouts, FM, Kuipers, OP, Vos, WM, Abee, T (2000) The role of cold-shock proteins in low-temperature adaptation of food-related bacteria. Syst Appl Microbiol 23: pp. 165-73 CrossRef
    38. Palonen, E, Lindstr枚m, M, Korkeala, H (2010) Adaptation of enteropathogenic Yersinia to low growth temperature. Crit Rev Microbiol 36: pp. 54-67 CrossRef
    39. Knudsen, GM, Nielsen, MB, Thomsen, LE, Aabo, S, Rychlik, I, Olsen, JE (2014) The role of ClpP; RpoS and CsrA in growth and filament formation of Salmonella enterica serovar Typhimurium at low temperature. BMC Microbiol 14: pp. 208 CrossRef
    40. Vakulskas CA, Pannuri A, Cort茅s-Selva D, Zere TR, Ahmer BM, Babitzke P, et al. Global effects of the DEAD-box RNA helicase DeaD (CsdA) on gene expression over a broad range of temperatures. Mol Microbiol. 2014;92:945鈥?8.
    41. Ohno, A, Kato, N, Sakamoto, R, Kimura, S, Yamaguchi, K (2008) Temperature-dependent parasitic relationship between Legionella pneumophila and a free-living amoeba (Acanthamoeba castellanii). Appl Environ Microbiol 74: pp. 4585-8 CrossRef
    42. Kinder, SA, Badger, JL, Bryant, GO, Pepe, JC, Miller, VL (1993) Cloning of the YenI restriction endonuclease and methyltransferase from Yersinia enterocolitica serotype O8 and construction of a transformable R-M+ mutant. Gene 136: pp. 271-5 CrossRef
    43. Maniatis, T, Fritsch, EF, Sambrook, J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
    44. Simon, R, Priefer, U, Puhler, A (1983) A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Bio/Technol 1: pp. 784-91 CrossRef
    45. B盲umler, AJ, Tsolis, RM, Van der Velden, AWM, Stojiljkovic, I, Anic, S, Heffron, F (1996) Identification of a new iron regulated locus of Salmonella typhi. Gene 183: pp. 207-13 CrossRef
    46. Michiels, T, Cornelis, GR (1991) Secretion of hybrid proteins by the Yersinia Yop export system. J Bacteriol 173: pp. 1677-85
    47. Venecia, K, Young, GM (2005) Environmental regulation and virulence attributes of the Ysa type III secretion system of Yersinia enterocolitica Biovar 1B. Infect Immun 73: pp. 5961-77 CrossRef
    48. Dennis, JJ, Zylstra, GJ (1998) Plasposons: modular self-cloning minitransposon derivatives for rapid genetic analysis of gram-negative bacterial genomes. Appl Environ Microbiol 64: pp. 2710-5
    49. Ausubel, FM, Brent, R, Kingston, RE, Moore, DD, Seidman, JG, Smith, JA (2001) Current protocols in molecular biology. John Wiley & Sons, New York CrossRef
    50. Figurski, DH, Helinski, DR (1979) Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci 76: pp. 1648-52 CrossRef
    51. Herrero, M, Lorenzo, V, Timmis, KN (1990) Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria. J Bacteriol 172: pp. 6557-67
    52. Young, GM, Miller, VL (1997) Identification of novel chromosomal loci affecting Yersinia enterocolitica pathogenesis. Mol Microbiol 25: pp. 319-28 CrossRef
    53. Givskov, M, Olsen, L, Molin, S (1988) Cloning and expression in Escherichia coli of the gene for extracellular phospholipase A1 from Serratia liquefaciens. J Bacteriol 170: pp. 5855-62
    54. Miller, JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
    55. Andrews, JM (2001) Determination of minimum inhibitory concentrations. J Antimicrob Chemother 48: pp. 5-16 CrossRef
  • 刊物主题:Microbiology; Biological Microscopy; Fungus Genetics; Parasitology; Virology; Life Sciences, general;
  • 出版者:BioMed Central
  • ISSN:1471-2180
文摘
Background A previous study identified a Yersinia enterocolitica transposon mutant, GY448, that was unable to export the flagellar type three secretion system (T3SS)-dependent phospholipase, YplA. This strain was also deficient for motility and unable to form colonies on Lauria-Bertani agar medium. Preliminary analysis suggested it carried a mutation in csrA. CsrA in Escherichia coli is an RNA-binding protein that is involved in specific post-transcriptional regulation of a myriad of physiological activities. This study investigated how CsrA affects expression of the flagellar regulatory cascade that controls YplA export and motility. It also explored the effect of csrA mutation on Y. enterocolitica in response to conditions that cue physiological changes important for growth in environments found both in nature and the laboratory. Results The precise location of the transposon insertion in GMY448 was mapped within csrA. Genetic complementation restored disruptions in motility and the YplA export phenotype (Yex), which confirmed this mutation disrupted CsrA function. Mutation of csrA affected expression of yplA and flagellar genes involved in flagellar T3SS dependent export and motility by altering expression of the master regulators flhDC. Mutation of csrA also resulted in increased sensitivity of Y. enterocolitica to various osmolytes, temperatures and antibiotics. Conclusions The results of this study reveal unique aspects of how CsrA functions in Y. enterocolitica to control its physiology. This provides perspective on how the Csr system is susceptible to adaptation to particular environments and bacterial lifestyles.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700