Sources of and variations in tropospheric CO in Central Siberia: Numerical experiments and observations at the Zotino Tall Tower Observatory
详细信息    查看全文
  • 作者:Yu. A. Shtabkin ; K. B. Moiseenko…
  • 关键词:carbon monoxide ; Zotino Tall Tower Observatory (ZOTTO) station ; natural fires ; anthropogenic pollution ; regional transport
  • 刊名:Izvestiya, Atmospheric and Oceanic Physics
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:52
  • 期:1
  • 页码:45-56
  • 全文大小:1,119 KB
  • 参考文献:1.D. J. Jacob, Introduction to Atmospheric Chemistry (Princeton Univ. Press, Princeton, 1999).
    2.G. Müller, WMO Global Atmosphere Watch (GAW). Strategic Plan: 2008–2015, World Meteorological Organization GAW Report no. 172, 2008.
    3.E. A. Kozlova, A. C. Manning, Y. Kisilyakhov, et al., “Methodology and calibration for continuous measurements of biogeochemical trace gas and O2 concentrations from a 300-m tall tower in central Siberia,” Atmos. Meas. Tech. Discuss., No. 1, 281–330 (2009).CrossRef
    4.M. Heimann, E. D. Schulze, J. Winderlich, et al., “The Zotino Tall Tower Observatory (ZOTTO): Quantifying large scale biogeochemical changes in central Siberia,” Nova Acta Leopold. 117 (399), 51–64 (2014).
    5.P. J. Crutzen, G. L. Mark, and U. Poschl, “On the background photochemistry of tropospheric ozone,” Tellus, Ser. A-B 51, 123–146 (1999).
    6.A. V. Vasileva, K. B. Moiseenko, J.-C. Mayer, et al., “Assessment of the regional atmospheric impact of wildfire emissions based on CO observations at the ZOTTO tall tower station in central Siberia,” J. Geophys. Res. 116, D07301 (2011). doi 10.1029/2010JD014571
    7.A. V. Vivchar, K. B. Moiseenko, R. A. Shumskii, and A. I. Skorokhod, “Identifying anthropogenic sources of nitrogen oxide emissions from calculations of Lagrangian trajectories and the observational data from a tall tower in Siberia during the spring–summer period of 2007,” Izv., Atmos. Ocean. Phys. 45 (3), 302–313 (2009).CrossRef
    8.H. Hakola, “Biogenic volatile organic compound (VOC) emissions from boreal deciduous trees and their atmospheric chemistry,” Finn. Meteorol. Inst. Contrib., No. 34 (2001).
    9.T. Holloway, H. Levy, and P. Kasibhatla, “Global distribution of carbon monoxide,” J. Geophys. Res. 105 (D10), 12123–12147 (2000).CrossRef
    10.X. Chi, J. Winderlich, J.-C. Mayer, et al., “Long-term measurements of aerosol and carbon monoxide at the ZOTTO tall tower to characterize polluted and pristine air in the Siberian taiga,” Atmos. Chem. Phys. 13, 12271–12298 (2013).CrossRef
    11.A. J. Soja, W. R. Cofer, H. H. Shugart, et al., “Estimating fire emissions and disparities in boreal Siberia (1998–2002),” J. Geophys. Res. 109, D14S06 (2004). doi 10.1029/2004JD004570CrossRef
    12.A. I. Sukhinin, N. H. F. French, and E. S. Kasischke, et al., “AVHRR-based mapping of fires in Russia: New products for fire management and carbon cycle studies,” Remote Sens. Environ. 93, 546–564 (2004).CrossRef
    13.I. T. Bertschi and D. A. Jaffe, “Long-range transport of ozone, carbon monoxide, and aerosols to the NE pacific troposphere during the summer of 2003: Observations of smoke plumes from Asian boreal fires,” J. Geophys. Res. 110, D05303 (2005). doi 10.1029/2004JD005135
    14.N. Spichtinger, R. Damoah, S. Eckhardt, et al., “Boreal forest fires in 1997 and 1998: A seasonal comparison using transport model simulations and measurement data,” Atmos. Chem. Phys. 4, 1857–1868 (2004).CrossRef
    15.M. Val Martin, R. A. Kahn, J. A. Logan, et al., “Spacebased observational constraints for 1-D fire smoke plume-rise models,” J. Geophys. Res. 117, D22204 (2012). doi 10.1029/2012JD018370
    16.A. Stohl, S. Eckhardt, C. Forster, et al., “On the pathways and timescales of intercontinental air pollution transport,” J. Geophys. Res. 107 (4684) (2002). doi 10.1029/2001JD001396
    17.A. V. Vivchar, K. B. Moiseenko, and N. V. Pankratova, “Estimates of carbon monoxide emissions from wildfires in Northern Eurasia for air quality assessment and climate modeling,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 46 (3), 281–293 (2010).
    18.C. Gerbig, S. Schmitgen, D. Kley, et al., “An improved fast-response vacuum-UV resonance fluorescence CO instrument,” J. Geophys. Res. 104, D11699 (1999).
    19.J.-C. Mayer, W. Birmili, M. Heimann, et al., “Longterm measurements of carbon monoxide and aerosols at the ZOTTO tall tower, Siberia,” EOS, Trans. Am. Geophys. Union 90 (52) (2001).
    20.I. Bey, D. J. Jacob, R. M. Yantosca, et al., “Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation,” J. Geophys. Res. 106, 23073–23096 (2001).CrossRef
    21.J. G. J. Olivier, A. F. Bouwman, C. W. M. van der Maas, and J. J. M. Berdowski, “Emission database for global atmospheric research (EDGAR),” Stud. Environ. Sci. 65, 651–659 (1995).CrossRef
    22.A. Guenther, T. Karl, P. Harley, et al., “Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature),” Atmos. Chem. Phys. 6 (11), 3181–3210 (2006).CrossRef
    23.R. C. Hudman, L. T. Murray, D. J. Jacob, et al., “Biogenic vs. anthropogenic sources of CO over the United States,” Geophys. Res. Lett. 35, L04801, 1–5 (2008).
    24.D. V. Spracklen, B. Bonn, and K. S. Carslaw, “Boreal forests, aerosols and the impacts on clouds and climate,” Philos. Trans. R. Soc., A 366 (1885), 4613–4626 (2008).CrossRef
    25.G. R. Van der Werf, J. T. Randerson, L. Giglio, et al., “Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009),” Atmos. Chem. Phys. 10, 11707–11735 (2010).CrossRef
    26.C. S. Potter and S. A. Klooster, “Global model estimates of carbon and nitrogen storage in litter and soil pools: Response to change in vegetation quality and biomass allocation,” Tellus, Ser. B 49 (1), 1–17 (1997).CrossRef
    27.Y. Rastigejev, R. Park, M. P. Brenner, and D. J. Jacob, “Resolving intercontinental pollution plumes in global models of atmospheric transport,” J. Geophys. Res. 115, D02302 (2010). doi 10.1029/2009JD012568
    28.S. R. Hanna, “Confidence limits for air quality model evaluations, as estimated by bootstrap and jackknife resampling methods,” Atmos. Environ. 23 (6), 1385–1398 (1989).CrossRef
    29.N. F. Elansky, “Spatial and temporal variations of trace gases surface concentrations over Russia from TROICA observations,” Proceedings of the International Symposium on Atmospheric Physics and Chemistry, Ed. by H. Wang and G. S. Golitsyn (Beijin, 2007), pp. 49–56.
    30.S. Sillman, “The relation between ozone, NOx and hydrocarbons in urban and polluted rural environments,” Atmos. Environ. 33 (12), 1821–1845 (1999).CrossRef
    31.T. Pierce, C. Geron, L. Bender, et al., “Influence of increased isoprene emissions on regional ozone modeling,” J. Geophys. Res. 103, 25611–25629 (1998).CrossRef
    32.W. L. Chameides, R. W. Lindsay, J. Richardson, and C. S. Kiang, “The role of biogenic hydrocarbons in urban photochemical smog: Atlanta as a case study,” Science 241, 1473–1475 (1988).CrossRef
  • 作者单位:Yu. A. Shtabkin (1)
    K. B. Moiseenko (1)
    A. I. Skorokhod (1)
    A. V. Vasileva (1)
    M. Heimann (2)

    1. A. M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Pyzhevskii per. 3, Moscow, 119017, Russia
    2. Max Planck Institute for Biogeochemistry, Jena, Germany
  • 刊物主题:Geophysics/Geodesy; Climatology;
  • 出版者:Springer US
  • ISSN:1555-628X
文摘
Contributions of climatically significant natural and anthropogenic emission sources in northern Eurasia to seasonal carbon monoxide (CO) variations observed at the Zotino Tall Tower Observatory (ZOTTO) in Central Siberia in 2007–2011 have quantitatively been estimated using the GEOS-Chem chemical transport model. It is shown that the formation of a stable continental pollution plume from sources in Western Europe, European Russia and southern Siberia during winter plays an important role in the regional balance of surface CO and allows one to explain 55–80% of the amplitude of the CO annual cycle observed at the ZOTTO station (~70–90 ppbv). During the warm period, the effect of the anthropogenic factor is weakly pronounced, and the background concentration of CO is regulated, first and foremost, by the oxidation of biogenic volatile organic compounds and fire activity in the region.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700