Ionospheric electron density profiling and modeling of COSMIC follow-on simulations
详细信息    查看全文
  • 作者:L.-C. Tsai ; S.-Y. Su ; C. H. Liu ; S. Tulasi Ram
  • 关键词:Radio occultation observation ; FS7/COSMIC2 ; Ionospheric \(N_{e}\) ; profiling ; Ionospheric \(N_e \) ; modeling
  • 刊名:Journal of Geodesy
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:90
  • 期:2
  • 页码:129-142
  • 全文大小:6,550 KB
  • 参考文献:Aragon-Angel A, Hernandez-Pajares M, Juan JM, Sanz J (2009) Obtaining more accurate electron density profiles from bending angle with GPS occultation data: FORMOSAT-3/COSMIC constellation. Adv Space Res 43:1694–1701. doi:10.​1016/​j.​asr.​2008.​10.​034 CrossRef
    Aragon-Angel A, Hernandez-Pajares M, Zornoza JMJ, Subirana JS (2010) Improving the Abel transform inversion using bending angles from FORMOSAT-3/COSMIC. GPS Solut 14:23–33. doi:10.​1007/​s10291-009-0147-y
    Borsche M, Kirchengast G, Foelsche U (2007) Tropical tropopause climatology as observed with radio occultation measurements from CHAMP compared to ECMWF and NCEP analyses. Geophys Res Lett 34:L03702. doi:10.​1029/​2006GL027918 CrossRef
    Brunini C, Azpilicueta Francisco, Nava Bruno (2013) A technique for routinely updating the ITU-R database using radio occultation electron density profiles. J Geodesy. doi:10.​1007/​s00190-013-0648-x
    Cucurull L, Derber JC, Treadon R, Purser RJ (2007) Assimilation of global positioning system radio occultation observations into NCEP’s global data assimilation system. Mon Weather Rev 135:3174–3193. doi:10.​1175/​MWR3461.​1 CrossRef
    Davis HF (1989) Fourier series and orthogonal functions. ISBN-13:978–0486659732. Dover Publications Inc, New York
    Fjeldbo G, Eshleman VR (1969) Atmosphere of Venus as studied with the Mariner V dual radio frequency occultation experiment. Radio Sci 4:879–897. doi:10.​1029/​RS004i010p00879 CrossRef
    Hajj GA, Romans LJ (1998) Ionospheric electron density profiles obtained with the Global Positioning System: results from the GPS/MET experiment. Radio Sci 33(1):175–190. doi:10.​1029/​97RS03183 CrossRef
    Hajj GA, Lee LC, Pi X, Romans LJ, Schreiner WS, Straus PR, Wang C (2000) COSMIC GPS ionospheric sensing and space weather. Terr Atmos Ocean Sci 11(1):235–272
    Hernández-Pajares M, Juan JM, Sanz J (2000) Improving the Abel inversion by adding ground GPS data to LEO radio occultation in ionospheric sounding. Geophys Res Lett 27(16):2743–2746. doi:10.​1029/​2000GL000032 CrossRef
    Kursinski ER, Hajj GA, Schofield JT, Linfield RP, Hardy KR (1997) Observing Earth’s atmosphere with radio occultation measurements using the Global Positioning System. J Geophys Res 102:23429–23465. doi:10.​1029/​97JD01569
    Leitinger R, Radicella S, Nava B (2002) Electron density models for assessment studies—new developments. Acta Geodet Geophys Hung 37:183–193. doi:10.​1556/​AGeod37.​2002.​2-3.​7 CrossRef
    Leroy SS, Anderson JG, Dykema JA (2006) Testing climate models using GPS radio occultation: a sensitivity analysis. J Geophys Res 111:D17105. doi:10.​1029/​2005JD006145 CrossRef
    Macalalad EP, Tsai L-C, Wu J, Liu CH (2012) Application of the TaiWan Ionospheric Model to single-frequency ionospheric delay corrections for GPS Positioning. GPS Solut. doi:10.​1007/​s10291-012-0282-8
    Macalalad EP, Tsai L-C, Wu J (2014) Performance evaluation of different ionospheric models in single-frequency code-based differential GPS positioning. GPS Solut. doi:10.​1007/​s10291-014-0422-4
    Pi X, Mannucci AJ, Iijima BA, Wilson BD, Komjathy A, Runge TF, Akopian V (2009) Assimilative modeling of ionospheric disturbances with FORMOSAT-3/COSMIC and ground-based GPS measurements. Terr Atmos Ocean Sci 20:273–285. doi:10.​3319/​TAO.​2008.​01.​04.​01(F3C) CrossRef
    Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in C: the art of scientific computing, 2nd edn. ISBN 0-521-43108-5. Cambridge Univ. Press, New York
    Rocken C, Anthes R, Exner M, Hunt D, Sokolovskiy S, Ware R, Gorbunov M, Schreiner W, Feng D, Herman B, Kuo Y, Zou X (1997) Analysis and validation of GPS/MET data in the neutral atmosphere. J Geophys Res 102(D25):29849–29866. doi:10.​1029/​97JD02400 CrossRef
    Schreiner WS, Sokolovskiy SV, Rocken C, Hunt DC (1999) Analysis and validation of GPS/MET radio occultation data in the ionosphere. Radio Sci 34(4):949–966. doi:10.​1029/​1999RS900034 CrossRef
    Schreiner WS, Yue X, Kuo Y-H, Mamula D, Ector D (2012) Satellite constellations for space weather and ionospheric studies: status of the COSMIC and planned COSMIC-2 missions. In: Proceedings of 9th AMS annual meeting, pp 1–16, New Orleans, LA, USA
    Straus PR (1999) Correcting GPS occultation measurements for ionospheric horizontal gradients. In: Proceedings of ionospheric effects symposium, Alexandria, VA, June
    Tricomi FG (1985) Integral equations. Dover, Mineola, New York, p 238
    Tsai L-C, Tsai WH (2004) Improvement of GPS/MET ionospheric profiling and validation with Chung-Li ionosonde measurements and the IRI. Terr Atmos Ocean Sci 15(4):589–607
    Tsai L-C, Liu CH, Hsiao TY, Huang JY (2009) A near real-time phenomenological model of ionospheric electron density based on GPS radio occultation data. Radio Sci 44. doi:10.​1029/​2009RS004154
    Tsai L-C, Kevin Chang K, Liu CH (2011) GPS radio occultation measurements on ionospheric electron density from low Earth orbit. J Geodesy. doi:10.​1007/​s00190-011-0476-9
    Tsai L-C, Macalalad EP, Liu CH (2014a) TaiWan Ionospheric Model (TWIM) prediction based on time series autoregressive analysis. Radio Sci 49. doi:10.​1002/​2014RS005448
    Tsai L-C, Tien MH, Chen GH, Zhang Y (2014b) HF radio angle-of-arrival measurements and ionosonde positioning. Terr Atmos Ocean Sci 25:401–413. doi:10.​3319/​TAO.​2013.​12.​19.​01(AA)
    Tulasi Ram, S, Su S-Y, Liu CH (2009) FORMOSAT-3/COSMIC observations of seasonal and longitudinal variations of equatorial ionization anomaly and its interhemispheric asymmetry during the solar minimum period. J Geophys Res 114:A06311. doi:10.​1029/​2008JA013880
    Wu X, Hu X, Gong X, Zhang X, Wang X (2009) An asymmetry correction method for ionospheric radio occultation. J Geophys Res 114:A03304. doi:10.​1029/​2008JA013025
    Yue X, Schreiner WS, Kuo Y-H (2012) A feasibility study of the radio occultation electron density retrieval aided by a global ionospheric data assimilation model. J Geophys Res 117(A08301). doi:10.​1029/​2011JA017446
    Yue X, Schreiner WS, Pedatella N, Anthes RA, Mannucci AJ, Straus PR, Liu JY (2014) Space weather observations by GNSS radio occultation: from FORMOSAT-3/COSMIC to FORMOSAT-7/COSMIC-2. Space Weather 12. doi:10.​1002/​2014SW001133
  • 作者单位:L.-C. Tsai (1) (2)
    S.-Y. Su (1)
    C. H. Liu (3)
    S. Tulasi Ram (4)

    1. Center for Space and Remote Sensing Research, National Central University, Chung-Li, Taiwan, ROC
    2. Institute of Space Science, National Central University, Chung-Li, Taiwan, ROC
    3. Academia Sinica, Taipei, Taiwan
    4. Indian Institute of Geomagnetism, Navi Mumbai, India
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Geophysics and Geodesy
    Mathematical Applications in Geosciences
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-1394
文摘
The FormoSat-3/ Constellation Observing System for Meteorology, Ionosphere and Climate (FS3/COSMIC) has been proven a successful mission on profiling ionospheric electron density \(( {N_e })\) using the radio occultation (RO) technique. A follow-on program (called FS7/COSMIC2) is now in progress. The FS3/COSMIC follow-on mission will have six 24\(^{\circ }\)-inclination and 550-km low Earth orbiting (LEO) satellites and six 72\(^{\circ }\)-inclination and 750-km LEO satellites to receive Tri-G (GPS, GLONASS, and Galileo) satellite signals. FS7/COSMIC2 RO observations were simulated in this study by calculating limb-viewing GNSS-to-LEO TEC values separately through two independent ionospheric models (the TWIM and NeQuick models). We propose a compensatory Abel-inversion scheme to improve vertical \(N_e \) profiling and three-dimensional (3D) \(N_e \) modeling in this FS7/COSMIC2 simulation study with future real observations. In this FS7/COSMIC2 feasibility study the number of RO observations will increase of around 10 times compared with FS3/COSMIC, and the windowing day number to collect \(N_e \) profiles and to derive every half-hour 3D \(N_e \) model could be decreased from 30 to 3 days. The results show that the root-mean-square (RMS) foF2 and hmF2 difference improvements are 46 % (32 %) and 21 % (4.6 %), respectively, in relative percentage over the standard Abel inversion at the TWIM-background (NeQuick-background) simulation experiment. The RMS modeling errors are about one order less than those from FS3/COSMIC simulations.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700