Evidence for Passive Chemical Camouflage in the Parasitic Mite Varroa destructor
详细信息    查看全文
  • 作者:Ricarda Kather (1)
    Falko P. Drijfhout (2)
    Sue Shemilt (2)
    Stephen J. Martin (3)

    1. Department of Animal and Plant Sciences
    ; University of Sheffield ; Sheffield ; S10 2TN ; UK
    2. Chemical Ecology Group
    ; School of Physical and Geographical Sciences ; Lennard-Jones Laboratory ; Keele University ; Keele ; ST5 5BG ; UK
    3. School of Environment and Life Sciences
    ; The University of Salford ; Manchester ; M5 4WT ; UK
  • 关键词:Varroa ; Honey bees ; Cuticular hydrocarbons ; Mimicry ; Camouflage ; Honey bee parasite
  • 刊名:Journal of Chemical Ecology
  • 出版年:2015
  • 出版时间:February 2015
  • 年:2015
  • 卷:41
  • 期:2
  • 页码:178-186
  • 全文大小:288 KB
  • 参考文献:1. Akino, T, Yamaoka, R (1998) Chemical mimicry in the root aphid parasitoid Paralipsis eikoae Yasumatsu (Hymenoptera: Aphidiidae) of the aphid-attending ant Lasius sakagamii Yamauchi & Hayashida (Hymenoptera: Formicidae). Chemoecology 8: pp. 153-161 CrossRef
    2. Akino, T, Knapp, JJ, Thomas, JA, Elmes, GW (1999) Chemical mimicry and host specificity in the butterfly Maculinea rebeli, a social parasite of Myrmica ant colonies. Proc R Soc B 266: pp. 1419-1426 CrossRef
    3. Arnold, G, Quenet, B, Masson, C (2000) Influence of social environment on genetically based subfamily signature in the honeybee. J Chem Ecol 26: pp. 2321-2333 CrossRef
    4. Aumeier, P, Rosenkranz, P, Francke, W (2002) Cuticular volatiles, attractivity of worker larvae and invasion of brood cells by Varroa mites. A comparison of Africanized and European honey bees. Chemoecology 12: pp. 65-75 CrossRef
    5. Bagn猫res, A-G, Lorenzi, MC Chemical deception/mimicry using cuticular hydrocarbons. In: Blomquist, GJ, Bagn猫res, A-G eds. (2010) Insect hydrocarbons: biology, biochemistry, and chemical ecology. University Press, Cambridge, pp. 282-324 CrossRef
    6. Blomquist, GJ, Bagn猫res, A-G (2010) Insect hydrocarbons: biology, biochemistry, and chemical ecology. University Press, Cambridge CrossRef
    7. Buchwald, R, Breed, MD (2005) Nestmate recognition cues in a stingless bee, Trigona fulviventris. Anim Behav 70: pp. 1331-1337 CrossRef
    8. Buckner, JS, Pitts-singer, TL, Guedot, C, Hagen, MM, Fatland, CL, Kemp, WP (2009) Cuticular lipids of female solitary bees, Osmia lignaria Say and Megachile rotundata (F.) (Hymenoptera: Megachilidae). Comp Biochem Physiol B 153: pp. 200-205 CrossRef
    9. Cini, A, Bruschini, C, Signorotti, L, Pontieri, L, Turillazzi, S, Cervo, R (2011) The chemical basis of host nest detection and chemical integration in a cuckoo paper wasp. J Exp Biol 214: pp. 3698-3703 CrossRef
    10. Renobales, M, Nelson, DR, MacKay, ME, Zamboni, AC, Blomquist, GJ (1988) Dynamics of hydrocarbon biosynthesis and transport to the cuticle during pupal and early adult development in the cabbage looper Trichoplusia ni (Lepidoptera: Noctuidae). Insect Biochem 18: pp. 607-613 CrossRef
    11. Dettner, K, Liepert, C (1994) Chemical mimicry and camouflage. Annu Rev Entomol 39: pp. 129-154 CrossRef
    12. Everaerts, C, Farine, JP, Brossut, R (1997) Changes of species specific cuticular hydrocarbon profiles in the cockroaches Nauphoeta cinerea and Leucophaea maderae reared in heterospecific groups. Entomol Exp Appl 85: pp. 145-150 CrossRef
    13. Falc贸n, T, Ferreira-Caliman, MJ, Nunes, FMF, Tanaka, ED, do Nascimento, FS, Bitondi, MMG (2014) Exoskeleton formation in Apis mellifera: cuticular hydrocarbons profiles and expression of desaturase and elongase genes during pupal and adult development. insect. J Biochem Mol Biol 50: pp. 68-81
    14. Franks, N, Blum, MS, Smith, R, Allies, AB (1990) Behavior and chemical disguise of cuckoo ant Leptothorax kutteri in relation to its host Leptothorax acervorum. J Chem Ecol 16: pp. 1431-1444 CrossRef
    15. Gibbs, A (1995) Physical properties of insect cuticular hydrocarbons: model mixtures and lipid interactions. Comp Biochem Physiol B 112: pp. 667-672 CrossRef
    16. Hojo, MK, Wada-Katsumata, A, Akino, T, Yamaguchi, S, Ozaki, M, Yamaoka, R (2009) Chemical disguise as particular caste of host ants in the ant inquiline parasite Niphanda fusca (Lepidoptera: Lycaenidae). Proc R Soc B 276: pp. 551-558 CrossRef
    17. H枚lldobler, B, Wilson, EO (1990) The ants. Harvard University Press, Cambridge CrossRef
    18. Howard, RW, McDaniel, CA, Blomquist, GJ (1982) Chemical mimicry as an integrating mechanism for three termitophiles associated with Reticulitermes virginicus (Banks). Psyche 89: pp. 157-167 CrossRef
    19. Howard, RW, Stanley-Samuelson, DW, Akre, RD (1990) Biosynthesis and chemical mimicry of cuticular hydrocarbons from the obligate predator, Microdon albicomatus Novak (Diptera: Syrphidae) and its ant prey, Myrmica incompleta Provancher (Hymenoptera: Formicidae). J Kansas Entomol Soc 63: pp. 437-443
    20. Ichinose, K, Lenoir, A (2009) Ontogeny of hyrdrocarbon profiles in the ant Aphanogaster senilis and effects of social isolation. C R Biologies 332: pp. 697-703 CrossRef
    21. Jeral, JM, Breed, MD, Hibbard, BE (1997) Thief ants have reduced quantities of cuticular compounds in a ponerine ant, Ectatomma ruidum. Physiol Entomol 22: pp. 207-211 CrossRef
    22. Kaib, M, Jmhasly, P, Wilfert, L, Durka, W, Franke, S, Francke, W, Leuthold, RH, Brandl, R (2004) Cuticular hydrocarbons and aggression in the termite Macrotermes subhyalinus. J Chem Ecol 30: pp. 365-385 CrossRef
    23. Kather, R, Drijfhout, FP, Martin, SJ (2011) Task group differences in cuticular lipids in the honey bee Apis mellifera. J Chem Ecol 37: pp. 205-212 CrossRef
    24. Kather R, Drijfhout F P, Shemilt S, Martin S J (2015) Evidence for colony-specific differences in chemical mimicry in the parasitic mite / Varroa destructor. Chemecology (accepted)
    25. Kraus, B, Koeniger, N, Fuchs, S (1986) Unterscheidung zwischen Bienen verschiedenen Alters durch Varroa jacobsoni Oud. und Bevorzugung von Ammenbienenvolk. Apidologie 17: pp. 257-266 CrossRef
    26. Kroiss, J, Schmitt, T, Strohm, E (2009) Low level of cuticular hydrocarbons in a parasitoid of a solitary digger wasp and its potential for concealment. J Entomol Sci 12: pp. 9-16 CrossRef
    27. Lenoir, A, Malosse, C, Yamaoka, R (1997) Chemical mimicry between parasitic ants of the genus Formicoxenus and their host Myrmica (Hymenoptera, Formicidae). Biochem Syst Ecol 25: pp. 379-389 CrossRef
    28. Lenoir, A, Fresneau, D, Errard, C, Hefetz, A The individuality and the colonial identity in ants: the emergence of the social representation concept. In: Detrain, C, Deneubourg, JL, Pasteels, J eds. (1999) Information processing in social insects. Birkh盲user Verlag, Basel, pp. 219-237 CrossRef
    29. Lenoir, A, D鈥橢ttorre, P, Errard, C, Hefetz, A (2001) Chemical ecology and social parasitism in ants. Annu Rev Entomol 46: pp. 573-599 CrossRef
    30. Lorenzi, MC, Bagn猫res, AG (2002) Concealing identity and mimicking hosts: a dual chemical strategy for a single social parasite? (Polistes atrimandibularis, Hymenoptera: Vespidae). Parasitology 125: pp. 507-512 CrossRef
    31. Martin, SJ, Drijfhout, FP (2009) A review of ant cuticular hydrocarbons. J Chem Ecol 35: pp. 1151-1161 CrossRef
    32. Martin, C, Salvy, M, Provost, 脡M, Bagn茅res, AG, Roux, M, Crauser, D, Clement, JL, Conte, Y (2001) Variations in chemical mimicry by the ectoparasitic mite Varroa jacobsoni according to the developmental stage of the host honey-bee Apis mellifera. Insect Biochem Mol Biol 31: pp. 365-379 CrossRef
    33. Martin, SJ, Vitikainen, E, Shemilt, S, Drijfhout, FP, Sundstrom, L (2013) Sources of variation in cuticular hydrocarbons in the ant Formica exsecta?. J Chem Ecol 39: pp. 1415-1423 CrossRef
    34. Nation, JL, Sanfor, MT, Milne, K (1992) Cuticular hydrocarbons from Varroa jacobsoni. Exp Appl Acarol 16: pp. 331-344 CrossRef
    35. Rosenkranz, P, Aumeier, P, Ziegelmann, B (2010) Biology and control of Varroa destructor. J Invert Pathol 103: pp. S96-S119 CrossRef
    36. Turillazzi, S, Sledge, MF, Dapporto, L, Landi, M, Fanelli, D, Fondelli, L, Zanetti, P, Dani, F (2004) Epicuticular lipids and fertility in primitively social wasps (Hymenoptera Stenogastrinae). Physiol Entomol 29: pp. 464-471 CrossRef
    37. Uboni, A, Bagn猫res, A-G, Christid猫s, J-P, Lorenziet, MG (2012) Cleptoparasites, social parasites and a common host: chemical insignificance for visiting host nests, chemical mimicry for living in. J Insect Physiol 58: pp. 1259-1264 CrossRef
    38. Vander Meer, RK, Wojcik, DP (1982) Chemical Mimicry in the Myrmecophilous beetle Myrmecaphodius excavaticollis. Science 218: pp. 806-808 CrossRef
    39. Vauchot B, Provost E, Bagn猫res A-G, Riviere G, Roux M, Cl茅ment J-L (1998) Differential adsorption of allospecific hydrocarbons by the cuticles of two termite species, / Reticulitermes santonensis and R. lucifugus grassei, Living in a Mixed Colony. J Insect Physiol 44:59鈥?6
    40. Vienne C, Soroker V, Hefetz A (1995) Congruency of hydrocarbon patterns in heterospecific groups of ants: transfer and/or biosynthesis ? Insectes Sociaux 42:267--277
    41. Beeren, C, Schulz, S, Hashim, R, Witte, V (2011) Acquisition of chemical recognition cues facilitates integration into ant societies. BMC Ecol 11: pp. 30 CrossRef
    42. Beeren, C, Hashim, R, Witte, V (2012) The social integration of a myrmecophilous spider does not depend exclusively on chemical mimicry. J Chem Ecol 38: pp. 262-271 CrossRef
    43. Wilson, EO (1971) The insect societies. Belknap, Harvard
  • 刊物主题:Ecology; Biochemistry, general; Entomology; Biological Microscopy; Agriculture;
  • 出版者:Springer US
  • ISSN:1573-1561
文摘
Social insect colonies provide a stable and safe environment for their members. Despite colonies being heavily guarded, parasites have evolved numerous strategies to invade and inhabit these hostile places. Two such strategies are (true) chemical mimicry via biosynthesis of host odor, and chemical camouflage, in which compounds are acquired from the host. The ectoparasitic mite Varroa destructor feeds on hemolymph of its honey bee host, Apis mellifera. The mite鈥檚 odor closely resembles that of its host, which allows V. destructor to remain undetected as it lives on the adult host during its phoretic phase and while reproducing on the honeybee brood. During the mite life cycle, it switches between host adults and brood, which requires it to adjust its profile to mimic the very different odors of honey bee brood and adults. In a series of transfer experiments, using bee adults and pupae, we tested whether V. destructor changes its profile by synthesizing compounds or by using chemical camouflage. We show that V. destructor required direct access to host cuticle to mimic its odor, and that it was unable to synthesize host-specific compounds itself. The mite was able to mimic host odor, even when dead, indicating a passive physico-chemical mechanism of the parasite cuticle. The chemical profile of V. destructor was adjusted within 3 to 9聽h after switching hosts, demonstrating that passive camouflage is a highly efficient, fast and flexible way for the mite to adapt to a new host profile when moving between different host life stages or colonies.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700