Bilateral pre- and postcentral gyrus volume positively correlates with T2-SNR of putamen in healthy adults
详细信息    查看全文
  • 作者:Masami Goto (1)
    Osamu Abe (2)
    Shigeki Aoki (3)
    Tosiaki Miyati (4)
    Hidemasa Takao (5)
    Naoto Hayashi (6)
    Harushi Mori (5)
    Akira Kunimatsu (5)
    Kenji Ino (1)
    Keiichi Yano (1)
    Kuni Ohtomo (5)
  • 关键词:Aging ; Gray matter volume ; Iron ; Magnetic resonance imaging ; Voxel ; based morphometry
  • 刊名:Neuroradiology
  • 出版年:2013
  • 出版时间:February 2013
  • 年:2013
  • 卷:55
  • 期:2
  • 页码:245-250
  • 全文大小:204KB
  • 参考文献:1. Ogg RJ, Steen RG (1998) Age-related changes in brain T1 are correlated with iron concentration. Magn Reson Med 40:749鈥?53 CrossRef
    2. Hallgren B, Sourander P (1958) The effect of age on the non-haemin iron in the human brain. J Neurochem 3:41鈥?1 CrossRef
    3. Haacke EM, Cheng NY, House MJ et al (2005) Imaging iron stores in the brain using magnetic resonance imaging. Magn Reson Imaging 23:1鈥?5 CrossRef
    4. Xu X, Wang Q, Zhang M (2008) Age, gender, and hemispheric differences in iron deposition in the human brain: an in vivo MRI study. Neuroimage 40:35鈥?2 CrossRef
    5. Bartzokis G, Mintz J, Sultzer D et al (1994) In vivo MR evaluation of age-related increases in brain iron. AJNR Am J Neuroradiol 15:1129鈥?138
    6. Beard JL, Connor JR, Jones BC (1993) Iron in the brain. Nutr Rev 51:157鈥?70 CrossRef
    7. Sachdev P (1993) The neuropsychiatry of brain iron. J Neuropsychiatry Clin Neurosci 5:18鈥?9
    8. Grundke-Iqbal I, Fleming J, Tung YC et al (1990) Ferritin is a component of the neuritic (senile) plaque in Alzheimer dementia. Acta Neuropathol 81:105鈥?10 CrossRef
    9. Connor JR, Menzies SL, St Martin SM et al (1992) A histochemical study of iron, transferrin, and ferritin in Alzheimer's diseased brains. J Neurosci Res 31:75鈥?3 CrossRef
    10. Ehmann WD, Markesbery WR, Alauddin M et al (1986) Brain trace elements in Alzheimer's disease. Neurotoxicology 7:195鈥?06
    11. Parsey RV, Krishnan KR (1998) Quantitative analysis of T2 signal intensities in Alzheimer's disease. Psychiatry Res 82:181鈥?85 CrossRef
    12. Ashburner J, Friston KJ (2000) Voxel-based morphometry鈥攖he methods. Neuroimage 11:805鈥?21 CrossRef
    13. Baron JC, Chetelat G, Desgranges B et al (2001) In vivo mapping of gray matter loss with voxel-based morphometry in mild Alzheimer's disease. Neuroimage 14:298鈥?09 CrossRef
    14. Keller SS, Roberts N (2008) Voxel-based morphometry of temporal lobe epilepsy: an introduction and review of the literature. Epilepsia 49:741鈥?57 CrossRef
    15. Musen G, Lyoo IK, Sparks CR et al (2006) Effects of type 1 diabetes on gray matter density as measured by voxel-based morphometry. Diabetes 55:326鈥?33 CrossRef
    16. Hayano F, Nakamura M, Asami T et al (2009) Smaller amygdala is associated with anxiety in patients with panic disorder. Psychiatry Clin Neurosci 63:266鈥?76 CrossRef
    17. Leube DT, Weis S, Freymann K et al (2008) Neural correlates of verbal episodic memory in patients with MCI and Alzheimer's disease鈥攁 VBM study. Int J Geriatr Psychiatry 23:1114鈥?118 CrossRef
    18. Maguire EA, Gadian DG, Johnsrude IS et al (2000) Navigation-related structural change in the hippocampi of taxi drivers. Proc Natl Acad Sci U S A 97:4398鈥?403 CrossRef
    19. Hackert VH, den Heijer T, Oudkerk M et al (2002) Hippocampal head size associated with verbal memory performance in nondemented elderly. Neuroimage 17:1365鈥?372 CrossRef
    20. Folstein MF, Folstein SE, McHugh PR (1975) "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189鈥?98 CrossRef
    21. Fazekas F, Chawluk JB, Alavi A et al (1987) MR signal abnormalities at 1.5 T in Alzheimer's dementia and normal aging. AJR Am J Roentgenol 149:351鈥?56
    22. Ashburner J, Friston KJ (2005) Unified segmentation. Neuroimage 26:839鈥?51 CrossRef
    23. Aquino D, Bizzi A, Grisoli M et al (2009) Age-related iron deposition in the basal ganglia: quantitative analysis in healthy subjects. Radiology 252:165鈥?72 CrossRef
    24. Sullivan EV, Adalsteinsson E, Rohlfing T et al (2009) Relevance of iron deposition in deep gray matter brain structures to cognitive and motor performance in healthy elderly men and women: exploratory findings. Brain Imaging Behav 3:167鈥?75 CrossRef
    25. Kemp JM, Powell TP (1970) The cortico-striate projection in the monkey. Brain 93:525鈥?46 CrossRef
    26. Kemp JM, Powell TP (1971) The structure of the caudate nucleus of the cat: light and electron microscopy. Philos Trans R Soc Lond B Biol Sci 262:383鈥?01 CrossRef
    27. Jones EG, Coulter JD, Burton H et al (1977) Cells of origin and terminal distribution of corticostriatal fibers arising in the sensory-motor cortex of monkeys. J Comp Neurol 173:53鈥?0 CrossRef
    28. Kwan JY, Jeong SY, Van Gelderen P et al (2012) Iron accumulation in deep cortical layers accounts for MRI signal abnormalities in ALS: correlating 7 Tesla MRI and pathology. PLoS One 7:e35241 CrossRef
    29. Schenck JF (2003) Magnetic resonance imaging of brain iron. J Neurol Sci 207:99鈥?02 CrossRef
    30. Duyn JH, van Gelderen P, Li TQ et al (2007) High-field MRI of brain cortical substructure based on signal phase. Proc Natl Acad Sci U S A 104:11796鈥?1801 CrossRef
    31. Gelman N, Gorell JM, Barker PB et al (1999) MR imaging of human brain at 3.0 T: preliminary report on transverse relaxation rates and relation to estimated iron content. Radiology 210:759鈥?67
    32. Bartzokis G, Aravagiri M, Oldendorf WH et al (1993) Field dependent transverse relaxation rate increase may be a specific measure of tissue iron stores. Magn Reson Med 29:459鈥?64 CrossRef
    33. Chen NK, Oshio K, Panych LP et al (2004) Spatially selective T2 and T2* measurement with line-scan echo-planar spectroscopic imaging. J Magn Reson 171:90鈥?6 CrossRef
    34. Zywicke HA, van Gelderen P, Connor JR et al (2002) Microscopic R2* mapping of reduced brain iron in the Belgrade rat. Ann Neurol 52:102鈥?05 CrossRef
    35. Kuhlpeter R, Dahnke H, Matuszewski L et al (2007) R2 and R2* mapping for sensing cell-bound superparamagnetic nanoparticles: in vitro and murine in vivo testing. Radiology 245:449鈥?57 CrossRef
    36. Drayer B, Burger P, Darwin R et al (1986) MRI of brain iron. AJR Am J Roentgenol 147:103鈥?10
    37. Brooks DJ, Luthert P, Gadian D et al (1989) Does signal-attenuation on high-field T2-weighted MRI of the brain reflect regional cerebral iron deposition? Observations on the relationship between regional cerebral water proton T2 values and iron levels. J Neurol Neurosurg Psychiatry 52:108鈥?11 CrossRef
    38. Aoki S, Okada Y, Nishimura K et al (1989) Normal deposition of brain iron in childhood and adolescence: MR imaging at 1.5 T. Radiology 172:381鈥?85
    39. Siemonsen S, Finsterbusch J, Matschke J et al (2008) Age-dependent normal values of T2* and T2鈥?in brain parenchyma. AJNR Am J Neuroradiol 29:950鈥?55 CrossRef
    40. Schenker C, Meier D, Wichmann W et al (1993) Age distribution and iron dependency of the T2 relaxation time in the globus pallidus and putamen. Neuroradiology 35:119鈥?24 CrossRef
    41. Drayer BP (1989) Basal ganglia: significance of signal hypointensity on T2-weighted MR images. Radiology 173:311鈥?12
    42. Bizzi A, Brooks RA, Brunetti A et al (1990) Role of iron and ferritin in MR imaging of the brain: a study in primates at different field strengths. Radiology 177:59鈥?5
    43. Peran P, Cherubini A, Luccichenti G et al (2009) Volume and iron content in basal ganglia and thalamus. Hum Brain Mapp 30:2667鈥?675 CrossRef
    44. Rodrigue KM, Haacke EM, Raz N (2011) Differential effects of age and history of hypertension on regional brain volumes and iron. Neuroimage 54:750鈥?59
    45. Imon Y, Yamaguchi S, Katayama S et al (1998) A decrease in cerebral cortex intensity on T2-weighted with ageing images of normal subjects. Neuroradiology 40:76鈥?0 CrossRef
    46. Agartz I, Saaf J, Wahlund LO et al (1991) T1 and T2 relaxation time estimates in the normal human brain. Radiology 181:537鈥?43
    47. Hoult DI, Phil D (2000) Sensitivity and power deposition in a high-field imaging experiment. J Magn Reson Imaging 12:46鈥?7 CrossRef
    48. Allkemper T, Tombach B, Schwindt W et al (2004) Acute and subacute intracerebral hemorrhages: comparison of MR imaging at 1.5 and 3.0 T鈥攊nitial experience. Radiology 232:874鈥?81 CrossRef
    49. Yao B, Li TQ, Gelderen P et al (2009) Susceptibility contrast in high field MRI of human brain as a function of tissue iron content. Neuroimage 44:1259鈥?266 CrossRef
    50. Duyn JH (2010) Study of brain anatomy with high-field MRI: recent progress. Magn Reson Imaging 28:1210鈥?215 CrossRef
    51. Fukunaga M, Li TQ, van Gelderen P et al (2010) Layer-specific variation of iron content in cerebral cortex as a source of MRI contrast. Proc Natl Acad Sci U S A 107:3834鈥?839 CrossRef
    52. Shmueli K, de Zwart JA, van Gelderen P et al (2009) Magnetic susceptibility mapping of brain tissue in vivo using MRI phase data. Magn Reson Med 62:1510鈥?522 CrossRef
    53. Takao H, Hayashi N, Ohtomo K (2011) Effect of scanner in longitudinal studies of brain volume changes. J Magn Reson Imaging 34:438鈥?44
    54. Shuter B, Yeh IB, Graham S et al (2008) Reproducibility of brain tissue volumes in longitudinal studies: effects of changes in signal-to-noise ratio and scanner software. Neuroimage 41:371鈥?79 CrossRef
  • 作者单位:Masami Goto (1)
    Osamu Abe (2)
    Shigeki Aoki (3)
    Tosiaki Miyati (4)
    Hidemasa Takao (5)
    Naoto Hayashi (6)
    Harushi Mori (5)
    Akira Kunimatsu (5)
    Kenji Ino (1)
    Keiichi Yano (1)
    Kuni Ohtomo (5)

    1. Department of Radiological Technology, University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
    2. Department of Radiology, Nihon University School of Medicine, Tokyo, Japan
    3. Department of Radiology, Juntendo University, Bunkyo, Japan
    4. Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
    5. Department of Radiology, University of Tokyo Hospital, Tokyo, Japan
    6. Department of Computational Diagnostic Radiology and Preventive Medicine, University of Tokyo Hospital, Tokyo, Japan
  • ISSN:1432-1920
文摘
Introduction The aim of the present study was to investigate the correlation between local gray matter volume and signal-to-noise ratio on T2-weighted imaging (T2-SNR) of putamen in healthy adults using two tools: voxel-based morphometry (VBM) treating age as a confounding covariate to control for age-related gray matter volume changes and high spatial resolution T1-weighted imaging acquired with a 3.0-T magnetic resonance (3T-MR) scanner. Methods Contiguous sagittal T1-weighted images and axial T2-weighted images of the brain were obtained from 1,380 healthy participants. T2-SNR of putamen was defined as A/B, where A is the mean T2-weighted signal intensity (T2-SI) in the right and left sides of putamen, and B is the background noise. The software Statistical Parametric Mapping 5 was used for image segmentation. The association between T2-SNR of putamen and gray matter volume was assessed with VBM, treating age as a confounding covariate. Results A significant positive correlation was obtained between T2-SNR of putamen and bilateral pre- and postcentral gyrus volume. Conclusion To the best of our knowledge, this is the first VBM study to show an age-independent relationship between T2-SNR of putamen and bilateral pre- and postcentral gyrus volumes in healthy adults.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700