Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra provides reduced effect of scanner for cortex volumetry with atlas-based method in healthy subjects
详细信息    查看全文
  • 作者:Masami Goto (1)
    Osamu Abe (2)
    Shigeki Aoki (3)
    Naoto Hayashi (4)
    Tosiaki Miyati (5)
    Hidemasa Takao (6)
    Takeshi Iwatsubo (7)
    Fumio Yamashita (8)
    Hiroshi Matsuda (9)
    Harushi Mori (6)
    Akira Kunimatsu (6)
    Kenji Ino (1)
    Keiichi Yano (1)
    Kuni Ohtomo (6)
  • 关键词:Atlas ; based method ; Cortex volumetry ; Effect of scanner ; Magnetic resonance imaging ; Statistical Parametric Mapping
  • 刊名:Neuroradiology
  • 出版年:2013
  • 出版时间:July 2013
  • 年:2013
  • 卷:55
  • 期:7
  • 页码:869-875
  • 全文大小:229KB
  • 参考文献:1. Maldjian JA, Laurienti PJ, Kraft RA et al (2003) An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage 19:1233-239 CrossRef
    2. Gonoi W, Abe O, Yamasue H, et al. (2009) Age-related changes in regional brain volume evaluated by atlas-based method. Neuroradiology
    3. Ashburner J, Friston KJ (2000) Voxel-based morphometry—the methods. Neuroimage 11:805-21 CrossRef
    4. Good CD, Johnsrude I, Ashburner J et al (2001) Cerebral asymmetry and the effects of sex and handedness on brain structure: a voxel-based morphometric analysis of 465 normal adult human brains. Neuroimage 14:685-00 CrossRef
    5. Nunnemann S, Wohlschlager AM, Ilg R et al (2009) Accelerated aging of the putamen in men but not in women. Neurobiol Aging 30:147-51 CrossRef
    6. Sato K, Taki Y, Fukuda H et al (2003) Neuroanatomical database of normal Japanese brains. Neural Netw 16:1301-310 CrossRef
    7. Draganski B, Gaser C, Busch V et al (2004) Neuroplasticity: changes in grey matter induced by training. Nature 427:311-12 CrossRef
    8. Baron JC, Chetelat G, Desgranges B et al (2001) In vivo mapping of gray matter loss with voxel-based morphometry in mild Alzheimer's disease. Neuroimage 14:298-09 CrossRef
    9. Keller SS, Roberts N (2008) Voxel-based morphometry of temporal lobe epilepsy: an introduction and review of the literature. Epilepsia 49:741-57 CrossRef
    10. Musen G, Lyoo IK, Sparks CR et al (2006) Effects of type 1 diabetes on gray matter density as measured by voxel-based morphometry. Diabetes 55:326-33 CrossRef
    11. Hayano F, Nakamura M, Asami T et al (2009) Smaller amygdala is associated with anxiety in patients with panic disorder. Psychiatry Clin Neurosci 63:266-76 CrossRef
    12. Doran SJ, Charles-Edwards L, Reinsberg SA et al (2005) A complete distortion correction for MR images: I. Gradient warp correction. Phys Med Biol 50:1343-361 CrossRef
    13. Janke A, Zhao H, Cowin GJ et al (2004) Use of spherical harmonic deconvolution methods to compensate for nonlinear gradient effects on MRI images. Magn Reson Med 52:115-22 CrossRef
    14. Jovicich J, Czanner S, Greve D et al (2006) Reliability in multi-site structural MRI studies: effects of gradient non-linearity correction on phantom and human data. Neuroimage 30:436-43 CrossRef
    15. Goto M, Abe O, Kabasawa H et al (2012) Effects of image distortion correction on voxel-based morphometry. Magn Reson Med Sci 11:27-4 CrossRef
    16. Sled JG, Zijdenbos AP, Evans AC (1998) A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 17:87-7 CrossRef
    17. Arnold JB, Liow JS, Schaper KA et al (2001) Qualitative and quantitative evaluation of six algorithms for correcting intensity nonuniformity effects. Neuroimage 13:931-43 CrossRef
    18. Vovk U, Pernus F, Likar B (2007) A review of methods for correction of intensity inhomogeneity in MRI. IEEE Trans Med Imaging 26:405-21 CrossRef
    19. Ashburner J, Friston KJ (2005) Unified segmentation. Neuroimage 26:839-51 CrossRef
    20. Ashburner J (2007) A fast diffeomorphic image registration algorithm. Neuroimage 38:95-13 CrossRef
    21. Takahashi R, Ishii K, Miyamoto N et al (2010) Measurement of gray and white matter atrophy in dementia with Lewy bodies using diffeomorphic anatomic registration through exponentiated lie algebra: a comparison with conventional voxel-based morphometry. AJNR Am J Neuroradiol 31:1873-878 CrossRef
    22. Cuingnet R, Gerardin E, Tessieras J et al (2011) Automatic classification of patients with Alzheimer's disease from structural MRI: a comparison of ten methods using the ADNI database. Neuroimage 56:766-81 CrossRef
    23. Peelle JE, Cusack R, Henson RN (2012) Adjusting for global effects in voxel-based morphometry: gray matter decline in normal aging. Neuroimage 60:1503-516 CrossRef
    24. Matsuda H, Mizumura S, Nemoto K et al (2012) Automatic voxel-based morphometry of structural MRI by SPM8 plus diffeomorphic anatomic registration through exponentiated lie algebra improves the diagnosis of probable Alzheimer Disease. AJNR Am J Neuroradiol 33:1109-114 CrossRef
    25. McLaren DG, Kosmatka KJ, Kastman EK et al (2010) Rhesus macaque brain morphometry: a methodological comparison of voxel-wise approaches. Methods 50:157-65 CrossRef
    26. Tzourio-Mazoyer N, Landeau B, Papathanassiou D et al (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15:273-89 CrossRef
    27. Goto M, Miyati T, Abe O et al (2012) Repeatability of measured brain volume by atlas-based method using T1-weighted image. J Digit Imaging 25:173-78 CrossRef
    28. Bookstein FL (2001) “Voxel-based morphometry-should not be used with imperfectly registered images. Neuroimage 14:1454-462 CrossRef
    29. Acosta-Cabronero J, Williams GB, Pereira JM et al (2008) The impact of skull-stripping and radio-frequency bias correction on grey-matter segmentation for voxel-based morphometry. Neuroimage 39:1654-665 CrossRef
    30. Rojas R, Rodriguez AO (2007) Numerical study of the SNR and SAR of MRI coil arrays. Conf Proc IEEE Eng Med Biol Soc 2007:1196-199
    31. Simmons A, Tofts PS, Barker GJ et al (1994) Sources of intensity nonuniformity in spin echo images at 1.5 T. Magn Reson Med 32:121-28 CrossRef
    32. Pereira JM, Xiong L, Acosta-Cabronero J et al (2010) Registration accuracy for VBM studies varies according to region and degenerative disease grouping. Neuroimage 49:2205-215 CrossRef
    33. Hallgren B, Sourander P (1958) The effect of age on the non-haemin iron in the human brain. J Neurochem 3:41-1 CrossRef
    34. Schenck JF (2003) Magnetic resonance imaging of brain iron. J Neurol Sci 207:99-02 CrossRef
  • 作者单位:Masami Goto (1)
    Osamu Abe (2)
    Shigeki Aoki (3)
    Naoto Hayashi (4)
    Tosiaki Miyati (5)
    Hidemasa Takao (6)
    Takeshi Iwatsubo (7)
    Fumio Yamashita (8)
    Hiroshi Matsuda (9)
    Harushi Mori (6)
    Akira Kunimatsu (6)
    Kenji Ino (1)
    Keiichi Yano (1)
    Kuni Ohtomo (6)

    1. Department of Radiological Technology, University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
    2. Department of Radiology, Nihon University School of Medicine, 30-1 Oyaguchi Kami-cho, Itabashi-ku, Tokyo, 173-8610, Japan
    3. Department of Radiology, Juntendo University, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan
    4. Department of Computational Diagnostic Radiology and Preventive Medicine, University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
    5. Graduate School of Medical Science, Kanazawa University, Tsunomatyou, Kanazawa, 920-1192, Japan
    6. Department of Radiology and Department of Computational Diagnostic Radiology and Preventive Medicine, University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
    7. Department of Neuropathology, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
    8. Department of Radiology, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Iwate, 028-3694, Japan
    9. Department of Nuclear Medicine, Integrative Brain Imaging Center National Center of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo, 187-8551, Japan
文摘
Introduction This study aimed to investigate whether the effect of scanner for cortex volumetry with atlas-based method is reduced using Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra (DARTEL) normalization compared with standard normalization. Methods Three-dimensional T1-weighted magnetic resonance images (3D-T1WIs) of 21 healthy subjects were obtained and evaluated for effect of scanner in cortex volumetry. 3D-T1WIs of the 21 subjects were obtained with five MRI systems. Imaging of each subject was performed on each of five different MRI scanners. We used the Voxel-Based Morphometry 8 tool implemented in Statistical Parametric Mapping 8 and WFU PickAtlas software (Talairach brain atlas theory). The following software default settings were used as bilateral region-of-interest labels: “Frontal Lobe,-“Hippocampus,-“Occipital Lobe,-“Orbital Gyrus,-“Parietal Lobe,-“Putamen,-and “Temporal Lobe.-/p> Results Effect of scanner for cortex volumetry using the atlas-based method was reduced with DARTEL normalization compared with standard normalization in Frontal Lobe, Occipital Lobe, Orbital Gyrus, Putamen, and Temporal Lobe; was the same in Hippocampus and Parietal Lobe; and showed no increase with DARTEL normalization for any region of interest (ROI). Conclusion DARTEL normalization reduces the effect of scanner, which is a major problem in multicenter studies.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700