Partitioning of net radiation and evapotranspiration over a superintensive drip-irrigated olive orchard
详细信息    查看全文
  • 作者:Rafael López-Olivari ; Samuel Ortega-Farías ; Carlos Poblete-Echeverría
  • 刊名:Irrigation Science
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:34
  • 期:1
  • 页码:17-31
  • 全文大小:2,664 KB
  • 参考文献:Allen RG, Pereira LS (2009) Estimating crop coefficients from fraction of ground cover and height. Irrig Sci 28:17–34CrossRef
    Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration: guidelines for computing crop water requirements, Irrigation and Drainage Paper 56. United Nations FAO, Rome, p 300. http://​www.​fao.​org/​docrep/​X0490E/​X0490E00.​htm
    Becker P, Edwards WRN (1999) Corrected heat capacity of wood for sap flow calculations. Tree Physiol 19:767–768CrossRef PubMed
    Berenguer MJ, Vossen PM, Grattan SR, Connell JH, Polito VS (2006) Tree irrigation levels for optimum chemical and sensory properties of olive oil. HortScience 41:427–432
    Bonachela S, Orgaz F, Villalobos F, Fereres E (2001) Soil evaporation from drip-irrigated olive orchards. Irrig Sci 20:65–71CrossRef
    Cammalleri C, Rallo G, Agnese C, Ciraolo G, Minacapilli M, Provenzano G (2013) Combined use of eddy covariance and sap flow techniques for partition of ET fluxes and water stress assessment in an irrigated olive orchard. Agric Water Manage 120:89–97CrossRef
    Connor DJ (2006) Towards optimal designs for hedgerow olive orchards. Aust J Agric Res 57:1067–1072CrossRef
    Er-Raki S, Chehbouni A, Hoedjes JCB, Ezzahar J, Duchemin B, Jacob F (2008) Improvement of FAO-56 method for olive orchards through sequential assimilation of thermal infrared-based estimates of ET. Agric Water Manage 95:309–321CrossRef
    Er-Raki S, Chehbouni A, Boulet G, Williams DG (2010) Using the dual approach of FAO56 for partitioning ET into soil and plant components for olive orchards in a semiarid region. Agric Water Manage 97:1769–1778CrossRef
    Ezzahar J, Chehbouni A, Hoedjes JCB, Er-raki S, Chehbouni Ah, Bonnefond JM, De Bruin HAR (2007) The use of the scintillation technique for estimating and monitoring water consumption of olive orchards in a semi arid region. Agric Water Manage 89:173–184CrossRef
    Fereres E, Castel JR (1981) Drip irrigation management. Division of Agricultural Sciences. University of California (Publication Leaflet 21259)
    Fernández JE, Moreno F, Girón IF, Blázquez OM (1997) Stomatal control of water use in olive tree leaves. Plant Soil 190:179–192CrossRef
    Flores F, Ortega-Farías S (2011) Effect of three levels of water application on oil yield and quality for an olive (‘Picual’) orchard. Acta Hortic (ISHS) 889:317–322CrossRef
    Galán C, García-Mozo H, Vázquez L, Ruiz L, Díaz de la Guardia C, Trigo MM (2005) Heat requirement for the onset of the Olea europaea L. pollen season in several sites in Andalusia and the effect of the expected future climate change. Int J Biometeorol 49:184–188CrossRef PubMed
    Garratt JR (1990) The internal boundary layer. Bound Layer Meteorol 50:171–203CrossRef
    Gash JHC (1986) A note on estimating the effect of limited fetch on micrometeorological evaporation measurements. Bound Layer Meteorl 35:409–413CrossRef
    mez del Campo M, Fernández JE (2007) Manejo del riego de olivares en seto a partir de medidas en suelo y planta. Editorial Agrícola Española, Madrid
    mez-del-Campo M (2013) Summer deficit irrigation in a hedgerow olive orchard cv. Arbequina: relationship between soil and tree water status, and growth and yield components. Span J Agric Res 11(2):547–557CrossRef
    mez-del-Campo M, Leal García A, Pezuela Espliego C (2008) Relationship of stem water potential and leaf conductance to vegetative growth of young olive trees in a hedgerow orchard. Aust J Exp Agric 59(3):270–279CrossRef
    Grattan SR, Berenguer MJ, Connell JH, Polito VS, Vossen PM (2006) Olive oil production as influenced by different quantities of applied water. Agric Water Manage 85:133–140CrossRef
    Green SR, Clothier B, Jardine B (2003) Theory and practical application of heat pulse to measure sap flow. Agron J 95:1371–1379CrossRef
    Hatton TJ, Catchpole EA, Vertessy RA (1990) Integration of sapflow velocity to estimate plant water use. Tree Physiol 6:201–209CrossRef PubMed
    Hsieh C-I, Katul G, Chi T (2000) An approximate analytical model for footprint estimation of scalar fluxes in thermally stratified atmospheric flows. Adv Water Resour 23:765–772CrossRef
    Kool D, Agam N, Lazarovitch N, Heiman JL, Sauer TJ, Ben-Gal A (2014) A review of approaches for evapotranspiration partitioning. Agric For Meteorol 184:56–70CrossRef
    Leclerc MY, Thurtell GW (1990) Footprint prediction of scalar fluxes using a Markovian analysis. Bound Layer Meteorol 52:247–258CrossRef
    Lee X, Black TA (1993) Atmospheric turbulence within and above a Douglas-fir stand. Part II. Eddy fluxes of sensible heat and water vapour. Bound Layer Meteorol 64:369–389CrossRef
    Leuning R, van Gorsel E, Massman WJ, Isaac PR (2012) Reflections on the surface energy imbalance problem. Agric For Meteorol 156:65–74CrossRef
    Liu H, Foken T (2001) A modified Bowen ratio method to determine sensible and latent heat fluxes. Meteorol Z 10(1):71–80CrossRef
    López-Bernal A, Alcántara E, Testi L, Villalobos F (2010) Spatial sap flow and xylem anatomical characteristics in olive trees under different irrigation regimes. Tree Physiol 30(12):1536–1544CrossRef PubMed
    Martínez-Cob A, Faci JM (2010) Evapotranspiration of an hedge-pruned olive orchard in semiarid area of NE Spain. Agric Water Manage 97:410–418CrossRef
    Moriana A, Pérez-López D, Gómez-Rico A, Salvador MD, Olmedilla N, Ribas F, Fregapane G (2007) Irrigation scheduling for traditional, low-density olive orchards: water relations and influence on oil characteristics. Agric Water Manage 87:171–179CrossRef
    Oliphant AJ, Grimmond CSB, Zutter HN, Schmid HP, Su HB, Scott SL, Offerle B, Randolph JC, Ehman J (2004) Heat storage and energy balance fluxes for a temperate deciduous forest. Agric For Meteorol 126:185–201CrossRef
    Orlandi F, Msallem M, Bonofiglio T, Ben Dhiab A, Sgromo C, Romano B, Fornaciari M (2010) Relationship between olive flowering and latitude in two Mediterranean countries (Italy and Tunisia). Theor Appl Climatol 102:265–273CrossRef
    Ortega-Farías S, López-Olivari R (2010) Evaluation of a two-layer Model to Estimate the Latent heat flux over a Drip-Irrigated Olive Orchard. In: 5th national decennial irrigation CD-ROM proceedings. Paper IRR 10-9981. ASABE Publication 711P0810cd
    Ortega-Farías S, López-Olivari R (2012) Validation of a two-layer model to estimate latent heat flux and evapotranspiration in a drip-irrigated olive orchard. T ASABE 55(4):1169–1178CrossRef
    Ortega-Farías S, Irmak S, Cuenca RH (2009) Editorial: special issue on evapotranspiration measurement and modeling. Irrig Sci 28:1–3CrossRef
    Ortega-Farías S, Poblete-Echeverría C, Brisson N (2010) Parameterization of a two-layer model for estimating vineyard evapotranspiration using meteorological measurements. Agric For Meteorol 150:276–286CrossRef
    Palomo MJ, Moreno F, Fernández JE, Díaz-Espejo A, Girón IF (2002) Determining water consumption in olive orchards using the water balance approach. Agric Water Manage 55:15–35CrossRef
    Poblete-Echeverría C, Ortega-Farias S (2009) Estimation of actual evapotranspiration for a drip-irrigated Merlot vineyard using a three-source model. Irrig Sci 28:65–78CrossRef
    Poblete-Echeverría C, Ortega-Farias SO (2013) Evaluation of single and dual crop coefficients over a drip-irrigated Merlot vineyard (Vitis vinifera L.) using combined measurements of sap flow sensors and an eddy covariance system. Aust J Grape Wine Res 19:249–260CrossRef
    Poblete-Echeverría C, Ortega-Farias S, Zuñiga M, Fuentes S (2012) Evaluation of compensated heat-pulse velocity method to determine vine transpiration using combined measurements of eddy covariance system and microlysimeters. Agric Water Manage 109:11–19CrossRef
    Rousseaux MC, Figuerola PI, Correa-Tedesco G, Searles PS (2009) Seasonal variations in sap flow and soil evaporation in an olive (Olea europaea L.) grove under two irrigation regimes in an arid region of Argentina. Agric Water Manage 96:1037–1044CrossRef
    Santos F, Valverde PC, Ramos AF, Reis JL, Castanheira NL (2006) Olive Tree’s transpiration rates in Southern Portugal. Paper number 067123, ASAE Annual Meeting. doi:10.13031/2013.21050@2006
    Sanz-Cortés F, Martínez-Calvo J, Badenes ML, Bleiholder H, Hack H, Llácer G, Meier U (2002) Phenological growth stages of olive trees (Olea europaea). Ann Appl Biol 140:151–157CrossRef
    Schotanus P, Nieuwstadt F, de Bruin H (1983) Temperature measurement with a sonic anemometer and its application to heat and moisture fluxes. Bound Layer Meteorol 26:81–93CrossRef
    Schuepp PH, Leclerc MY, Macpherson JI, Desjardins RL (1990) Footprint prediction of scalar fluxes from analytical solutions of the diffusion equation. Bound Layer Meteorol 50:353–373CrossRef
    Shao C, Chen J, Li L, Xu W, Chen S, Gwen T, Xu J, Zhang W (2008) Spatial variability in soil heat flux at three Inner Mongolia steppe ecosystems. Agric For Meteorol 148:1433–1443CrossRef
    Testi L, Villalobos FJ, Orgaz F (2004) Evapotranspiration of a young irrigated olive orchard in southern Spain. Agric For Meteorol 121:1–18CrossRef
    Testi L, Villalobos FJ, Orgaz F, Fereres E (2006a) Water requirements of olive orchards: I simulation of daily evapotranspiration for scenario analysis. Irrig Sci 24:69–76CrossRef
    Testi L, Orgaz F, Villalobos FJ (2006b) Variations in bulk canopy conductance of an irrigated olive (Olea europaea L.) orchard. Environ Exp Bot 55:15–28CrossRef
    Tognetti R, Andria R, Sacchi R, Lavini A, Morelli G, Alvino A (2007) Deficit irrigation affects seasonal changes in leaf physiology and oil quality of Olea europaea (cultivars Frantoio and Leccino). Ann Appl Biol 150:169–186CrossRef
    Twine TE, Kustas WP, Norman JM, Cook DR, Houser PR, Meyers TP, Prueger JH, Starks PJ, Wesely ML (2000) Correcting eddy-covariance flux underestimates over a grassland. Agric For Meteorol 103:279–300CrossRef
    Villalobos FJ, Orgaz F, Testi L, Fereres E (2000) Measurement and modeling of evapotranspiration of olive (Olea europaea L.) orchards. Eur J Agron 13:155–163CrossRef
    Villalobos FJ, Testi L, Moreno-Perez MF (2009) Evaporation and canopy conductance of citrus orchards. Agric Water Manage 96:565–573CrossRef
    Villalobos FJ, Testi L, Orgaz F, García-Tejera O, Lopez-Bernal A, González-Dugo MV, Ballester-Lurbe C, Castel JR, Alarcón-Cabañero JJ, Nicolás-Nicolás E, Girona J, Marsal J, Fereres E (2013) Modelling canopy conductance and transpiration of fruit trees in Mediterranean areas: a simplified approach. Agric For Meteorol 171–172:93–103CrossRef
    Webb EK, Pearman GI, Leuning R (1980) Correction of flux measurements for density effects due to heat and water vapour transfer. Quart J R Met Soc 106:85–100CrossRef
    Williams DG, Cable W, Hultine K, Hoedjes JCB, Yepez EA, Simonneaux V, Er-Raki S, Boulet G, de Bruin HAR, Chehbouni A, Hartogensis OK, Timouk F (2004) Evapotranspiration components determined by stable isotope, sap flow and eddy covariance techniques. Agric For Meteorol 125:241–258CrossRef
    Wilson K, Goldstein A, Falge E, Aubinet M, Baldocchi D, Berbigier P, Bernhofer C, Ceulemans R, Dolman H, Field C, Grelle A, Ibrom A, Law BE, Kowalski A, Meyers T, Moncrieff J, Monson R, Oechel W, Tenhunen J, Valentini R, Verma S (2002) Energy balance closure at FLUXNET sites. Agric For Meteorol 113:223–243CrossRef
  • 作者单位:Rafael López-Olivari (1)
    Samuel Ortega-Farías (2)
    Carlos Poblete-Echeverría (2)

    1. Instituto de Investigaciones Agropecuarias, INIA Carillanca, Km 10 camino Cajón-Vilcún s/n, Temuco, Chile
    2. Research and Extension Center for Irrigation and Agroclimatology (CITRA), Universidad de Talca, Casilla 747, Talca, Chile
  • 刊物主题:Agriculture; Water Industry/Water Technologies; Environment, general; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution; Sustainable Development; Climate Change;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1432-1319
文摘
To evaluate the partitioning of net radiation (R n) and actual evapotranspiration (ET a), measurements of R n, sensible heat flux (H), soil heat flux (G), latent heat flux (LE), reference evapotranspiration (ET o), transpiration (T p) and soil evaporation (E s) were taken during the 2009/2010 and 2010/2011 growing seasons on a flat and uniform olive (cv. Arbequina) orchard, located in the Pencahue Valley, Región del Maule, Chile (35°23′ LS; 71°44′ LW; 96 m above sea level). Olive trees were trained on a triangular hedgerow system with a plant density of 1333 trees ha−1 (superintensive). An eddy covariance system, sapflow sensors and microlysimeter were used to measure ET a, T p and E s, respectively. Results indicated that the eddy covariance measurements showed a lack of the energy balance closure of 12.8 %. Values of LE, H and G were between 28–47, 34–68 and 2–6 % of R n, respectively, while ratios of T p and E s to ET a ranged between 0.64–0.74 and 0.26–0.36, respectively. During two growing seasons, the single crop coefficient (K c = ET a/ET o) was between 0.27 and 0.66, while the dual crop coefficient (T p/ET o + E s/ET o) ranged between 0.26 and 0.56. According to these results, H and T p were the main component of R n and ET a, respectively, for the particular conditions of the drip-irrigated olive orchard with a fractional cover of 30 % and wetted area of 4.5 %.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700