Temporal metabolomic responses of cultured HepG2 liver cells to high fructose and high glucose exposures
详细信息    查看全文
  • 作者:John K. Meissen ; Kristin M. Hirahatake ; Sean H. Adams ; Oliver Fiehn
  • 关键词:High fructose corn syrup ; Metabolic networks ; Time ; of ; flight mass spectrometry ; Chromatography ; Lipidomics
  • 刊名:Metabolomics
  • 出版年:2015
  • 出版时间:June 2015
  • 年:2015
  • 卷:11
  • 期:3
  • 页码:707-721
  • 全文大小:3,059 KB
  • 参考文献:Appling, D. R. (1991). Compartmentation of folate-mediated one-carbon metabolism in eukaryotes. FASEB Journal, 5(12), 5645.
    Barupal, D. K., Haldiya, P. K., Wohlgemuth, G., Kind, T., Kothari, S. L., Pinkerton, K. E., et al. (2012). MetaMapp: mapping and visualizing metabolomic data by integrating information from biochemical pathways and chemical and mass spectral similarity. BMC Bioinformatics, 13, 99.View Article PubMed Central PubMed
    Basaranoglu, M., Basaranoglu, G., Sabuncu, T., & Sentürk, H. (2013). Fructose as a key player in the development of fatty liver disease. World Journal of Gastroenterology, 19(8), 1166.View Article PubMed Central PubMed
    Beck-Nielsen, H., Pedersen, O., & Lindskov, H. O. (1980). Impaired cellular insulin binding and insulin sensitivity induced by high-fructose feeding in normal subjects. The American Journal of Clinical Nutrition, 33(2), 273-78.PubMed
    Blakley, R. L. (1951). The metabolism and antiketogenic effects of sorbitol; sorbitol dehydrogenase. The Biochemical Journal, 49(3), 257-71.PubMed Central PubMed
    Bray, G. A., Nielsen, S. J., & Popkin, B. M. (2004). Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity. The American Journal of Clinical Nutrition, 79(4), 537-43.PubMed
    Bruckdorfer, K. R., Khan, I. H., & Yudkin, J. (1972). Fatty acid synthetase activity in the liver and adipose tissue of rats fed with various carbohydrates. The Biochemical Journal, 129(2), 439-46.PubMed Central PubMed
    Daly, M. E., Vale, C., Walker, M., Alberti, K. G., & Mathers, J. C. (1997). Dietary carbohydrates and insulin sensitivity: a review of the evidence and clinical implications. The American Journal of Clinical Nutrition, 66(5), 1072-085.PubMed
    Daly, M. E., Vale, C., Walker, M., Littlefield, A., Alberti, K. G., & Mathers, J. C. (1998). Acute effects on insulin sensitivity and diurnal metabolic profiles of a high-sucrose compared with a high-starch diet. The American Journal of Clinical Nutrition, 67(6), 1186-196.PubMed
    Darling, P. B., Grunow, J., Rafii, M., Brookes, S., Ball, R. O., & Pencharz, P. B. (2000). Threonine dehydrogenase is a minor degradative pathway of threonine catabolism in adult humans. American Journal of Physiology Endocrinology and Metabolism, 278(5), E877–E884.PubMed
    Dettmer, K., Aronov, P. A., & Hammock, B. D. (2007). Mass spectrometry-based metabolomics. Mass Spectrometry Reviews, 26(1), 51-8.View Article PubMed Central PubMed
    Elliott, S. S., Keim, N. L., Stern, J. S., Teff, K., & Havel, P. J. (2002). Fructose, weight gain, and the insulin resistance syndrome. The American Journal of Clinical Nutrition, 76(5), 911-22.PubMed
    Fiehn, O. (2002). Metabolomics–the link between genotypes and phenotypes. Plant Molecular Biology, 48(1-), 155-71.View Article PubMed
    Fiehn, O., Garvey, W. T., Newman, J. W., Lok, K. H., Hoppel, C. L., & Adams, S. H. (2010). Plasma metabolomic profiles reflective of glucose homeostasis in non-diabetic and type 2 diabetic obese African-American women. PLoS ONE, 5(12), e15234.View Article PubMed Central PubMed
    Fiehn, O., Wohlgemuth, G., & Scholz, M. (2005). Setup and Annotation of Metabolomic Experiments by Integrating Biological and Mass Spectrometric Metadata. Lecture Notes in Computer Science, 3615, 224-39.View Article
    Fiehn, O., Wohlgemuth, G., Scholz, M., Kind, T., Lee do, Y., Lu, Y., et al. (2008). Quality control for plant metabolomics:reporting MSI-compliant studies. The Plant Journal: For Cell and Molecular Biology, 53(4), 691-04.View Article
    Fried, S. K., & Rao, S. P. (2003). Sugars, hypertriglyceridemia, and cardiovascular disease. The American Journal of Clinical Nutrition, 78(4), 873S-80S.PubMed
    Grivell, A. R., Halls, H. J., & Berry, M. N. (1991). Role of mitochondria in hepatic fructose metabolism. Biochimica et Biophysica Acta, 1059(1), 45-4.View Article PubMed
    Hallfrisch, J., Reiser, S., & Prather, E. S. (1983). Blood lipid distribution of hyperinsulinemic men consuming three levels of fructose. The American Journal of Clinical Nutrition, 37(5), 740-48.PubMed
    Havel, P. J. (2005). Dietary Fructose: Implications for Dysregulation of Energy Homeostasis and Lipid/Carbohydrate Metabolism. Nutrition Reviews, 63(5), 133-57.View Article PubMed
    Heinz, F., Lamprecht, W., & Kirsch, J. (1968). Enzymes of fructose metabolism in human liver. Journal of Clinical Investigation, 47(8), 1826-832.View Article PubMed Central PubMed
    Hirahatake, K. M., Meissen, J. K., Fiehn, O., & Adams, S. H. (2011). Comparative Effects of Fructose and Glucose on Lipogenic Gene Expression and Intermediary Metabolism in HepG2 Liver Cells. PLoS ONE, 6(11), e26583.View Article PubMed Central PubMed
    Ho, J. E., Larson, M. G., Vasan, R. S., Ghorbani, A., Cheng, S., Rhee, E. P., et al. (2013). Metabolite profiles during oral glucose challenge. Diabetes, 62(8), 2689-698.View Article PubMed Central PubMed
    Kanehisa, M., Goto, S., Furum
  • 作者单位:John K. Meissen (1)
    Kristin M. Hirahatake (3) (4)
    Sean H. Adams (3) (4)
    Oliver Fiehn (1) (2)

    1. UC Davis West Coast Metabolomics Center, University of California Davis, 451 Health Sciences Dr., Davis, CA, 95616, USA
    3. Department of Nutrition, University of California Davis, One Shields Avenue., Davis, CA, 95616, USA
    4. Obesity and Metabolism Research Unit, USDA-Agricultural Research Service Western Human Nutrition Research Center, 430 W. Health Sciences Dr., Davis, CA, 95616, USA
    2. Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, PO Box 80203, Jeddah, 21589, Saudi-Arabia
  • 刊物主题:Biochemistry, general; Molecular Medicine; Cell Biology; Developmental Biology; Biomedicine general;
  • 出版者:Springer US
  • ISSN:1573-3890
文摘
High fructose consumption has been implicated with deleterious effects on human health, including hyperlipidemia elicited through de novo lipogenesis. However, more global effects of fructose on cellular metabolism have not been elucidated. In order to explore the metabolic impact of fructose-containing nutrients, we applied both GC-TOF and HILIC-QTOF mass spectrometry metabolomic strategies using extracts from cultured HepG2 cells exposed to fructose, glucose, or fructose?+?glucose. Cellular responses were analyzed in a time-dependent manner, incubated in media containing 5.5?mM glucose?+?5.0?mM fructose in comparison to controls incubated in media containing either 5.5?mM glucose or 10.5?mM glucose. Mass spectrometry identified 156 unique known metabolites and a large number of unknown compounds, which revealed metabolite changes due to both utilization of fructose and high-carbohydrate loads independent of hexose structure. Fructose was shown to be partially converted to sorbitol, and generated higher levels of fructose-1-phosphate as a precursor for glycolytic intermediates. Differentially regulated ratios of 3-phosphoglycerate to serine pathway intermediates in high fructose media indicated a diversion of carbon backbones away from energy metabolism. Additionally, high fructose conditions changed levels of complex lipids toward phosphatidylethanolamines. Patterns of acylcarnitines in response to high hexose exposure (10.5?mM glucose or glucose/fructose combination) suggested a reduction in mitochondrial beta-oxidation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700