Analysis of the genetic variation in growth, ecophysiology, and chemical and metabolomic composition of wood of Populus trichocarpa provenances
详细信息    查看全文
  • 作者:Fernando P. Guerra ; James H. Richards ; Oliver Fiehn
  • 关键词:Populus trichocarpa ; Growth ; Stable isotopes ; Lignin ; Cellulose ; Wood metabolome
  • 刊名:Tree Genetics & Genomes
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:12
  • 期:1
  • 全文大小:1,669 KB
  • 参考文献:Abramson M, Shoseyov O, Shani Z (2010) Plant cell wall reconstruction toward improved lignocellulosic production and processability. Plant Sci 178:61–72. doi:10.​1016/​j.​plantsci.​2009.​11.​003 CrossRef
    Al Afas N, Pellis A, Niinemets Ü, Ceulemans R (2005) Growth and production of a short rotation coppice culture of poplar. II. Clonal and year-to-year differences in leaf and petiole characteristics and stand leaf area index. Biomass Bioenergy 28:536–547. doi:10.​1016/​j.​biombioe.​2004.​11.​010 CrossRef
    Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics. 1165-1188. doi:10.​1214/​aos/​1013699998
    Bonhomme L et al (2009) Leaf proteome analysis of eight Populus x euramericana genotypes: genetic variation in drought response and in water-use efficiency involves photosynthesis-related proteins. Proteomics 9:4121–4142. doi:10.​1002/​pmic.​200900047 CrossRef PubMed
    Bradshaw HD, Stettler RF (1995) Molecular genetics of growth and development in Populus. IV. Mapping QTLs with large effects on growth, form, and phenology traits in a forest tree. Genetics 139:963–973PubMed
    Campbell MM, Sederoff RR (1996) Variation in lignin content and composition (mechanisms of control and implications for the genetic improvement of plants). Plant Physiol 110:3–13PubMedCentral PubMed
    Condon AG, Richards RA, Rebetzke GJ, Farquhar GD (2004) Breeding for high water-use efficiency. J Exp Bot 55:2447–2460. doi:10.​1093/​jxb/​erh277 CrossRef PubMed
    Couturier J, Doidy J, Guinet F, Wipf D, Blaudez D, Chalot M (2010) Glutamine, arginine and the amino acid transporter Pt-CAT11 play important roles during senescence in poplar. Ann Bot 105:1159–1169. doi:10.​1093/​aob/​mcq047 PubMedCentral CrossRef PubMed
    Deslauriers A, Giovannelli A, Rossi S, Castro G, Fragnelli G, Traversi L (2009) Intra-annual cambial activity and carbon availability in stem of poplar. Tree Physiol 29:1223–1235. doi:10.​1093/​treephys/​tpp061 CrossRef PubMed
    Dillen S et al (2009) Genomic regions involved in productivity of two interspecific poplar families in Europe. 1. Stem height, circumference and volume. Tree Gen Genomes 5:147–164. doi:10.​1007/​s11295-008-0175-8 CrossRef
    Dillen SY, Marron N, Koch B, Ceulemans R (2008) Genetic variation of stomatal traits and carbon isotope discrimination in two hybrid poplar families (Populus deltoides ‘S9-2’ x P. nigra ‘Ghoy’ and P. deltoides ‘S9-2’ x P. trichocarpa ‘V24’). Ann Bot 102:399–407. doi:10.​1093/​aob/​mcn107 PubMedCentral CrossRef PubMed
    Dillen SY, Rood S, Ceulemans R (2010) Growth and physiology. In: Jansson S, Bhalerao R, Groover A (eds) Genetics and genomics of Populus, vol 8, Plant genetics and genomics: crops and models. Springer, New York, pp 39–63. doi:10.​1007/​978-1-4419-1541-2_​10 CrossRef
    Dinus R (2001) Genetic improvement of poplar feedstock quality for ethanol production. Appl Biochem Biotechnol 91-93:23–34. doi:10.​1385/​abab:​91-93:​1-9:​23 CrossRef PubMed
    Easlon HM, Nemali KS, Richards JH, Hanson DT, Juenger TE, McKay JK (2014) The physiological basis for genetic variation in water use efficiency and carbon isotope composition in Arabidopsis thaliana. Photosynth Res 119:119–129. doi:10.​1007/​s11120-013-9891-5 PubMedCentral CrossRef PubMed
    Eckert AJ et al (2012) Association genetics of the loblolly pine (Pinus taeda, Pinaceae) metabolome. New Phytologist 193:890–902. doi:10.​1111/​j.​1469-8137.​2011.​03976.​x CrossRef PubMed
    Ellis B, Jansson S, Strauss SH, Tuskan GA (2010) Why and how Populus became a “model tree”. In: Jansson S, Bhalerao R, Groover A (eds) Genetics and genomics of Populus, vol 8, Plant genetics and genomics: crops and models. Springer, New York, pp 3–14. doi:10.​1007/​978-1-4419-1541-2_​10 CrossRef
    Farquhar G, O’Leary M, Berry J (1982) On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Funct Plant Biol 9:121–137. doi:10.​1071/​PP9820121
    Farquhar G, Richards R (1984) Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Funct Plant Biol 11:539–552. doi:10.​1071/​PP9840539
    Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 40:503–537. doi:10.​1146/​annurev.​pp.​40.​060189.​002443 CrossRef
    Frewen BE, Chen TH, Howe GT, Davis J, Rohde A, Boerjan W, Bradshaw HD (2000) Quantitative trait loci and candidate gene mapping of bud set and bud flush in Populus. Genetics 154:837–845PubMedCentral PubMed
    Groover AT, Nieminen K, Helariutta Y, Mansfield SD (2010) Wood formation in Populus. In: Jansson S, Bhalerao R, Groover A (eds) Genetics and Genomics of Populus, vol 8, Plant genetics and genomics: crops and models. Springer, New York, pp 201–224. doi:10.​1007/​978-1-4419-1541-2_​10 CrossRef
    Guerra FP, Wegrzyn JL, Sykes R, Davis MF, Stanton BJ, Neale DB (2013) Association genetics of chemical wood properties in black poplar (Populus nigra). New Phytol 197:162–176. doi:10.​1111/​nph.​12003 CrossRef PubMed
    Henderson DE, Jose S (2005) Production physiology of three fast-growing hardwood species along a soil resource gradient. Tree Physiol 25:1487–1494. doi:10.​1093/​treephys/​25.​12.​1487 CrossRef PubMed
    Hertzberg M et al (2001) A transcriptional roadmap to wood formation. Proc Natl Acad Sci 98:14732–14737. doi:10.​1073/​pnas.​261293398 PubMedCentral CrossRef PubMed
    Isik F, Toplu F (2004) Variation in juvenile traits of natural black poplar (Populus nigra L.) clones in Turkey. New Forests 27:175–187. doi:10.​1023/​A:​1025071515826 CrossRef
    Kačík F, Ďurkovič J, Kačíková D (2012) Chemical profiles of wood components of poplar clones for their energy utilization. Energies 5:5243–5256CrossRef
    Laureysens I, Pellis A, Willems J, Ceulemans R (2005) Growth and production of a short rotation coppice culture of poplar. III. Second rotation results. Biomass Bioenergy 29:10–21. doi:10.​1016/​j.​biombioe.​2005.​02.​005 CrossRef
    Marron N, Bastien C, Sabatti M, Taylor G, Ceulemans R (2006) Plasticity of growth and sylleptic branchiness in two poplar families grown at three sites across Europe. Tree Physiol 26:935–946CrossRef PubMed
    McKown AD et al (2014) Geographical and environmental gradients shape phenotypic trait variation and genetic structure in Populus trichocarpa. New Phytologist 201:1263–1276. doi:10.​1111/​nph.​12601 CrossRef PubMed
    Miller R, Keller M (2009) The DOE BioEnergy Science Center-A U.S. Department of Energy Bioenergys Research Center. In: Tomes D, Lakshmanan P, Songstad D (eds) Biofuels. Global impact on renewable energy, production agriculture, and technological advancements. Springer, New York, pp 9-18. doi:DOI 10.1007/978-1-4419-7145-6
    Mitchell CP (1992) Ecophysiology of short rotation forest crops. Biomass Bioenergy 2:25–37. doi:10.​1016/​0961-9534(92)90085-5 CrossRef
    Monclus R et al (2005) Productivity, leaf traits and carbon isotope discrimination in 29 Populus deltoides × P. nigra clones. New Phytol 167:53–62. doi:10.​1111/​j.​1469-8137.​2005.​01407.​x CrossRef PubMed
    Monclus R et al (2009) Productivity, water-use efficiency and tolerance to moderate water deficit correlate in 33 poplar genotypes from a Populus deltoides x Populus trichocarpa F1 progeny. Tree Physiol 29:1329–1339. doi:10.​1093/​treephys/​tpp075 CrossRef PubMed
    Ozel HB, Ertekin M, Tunctaner K (2010) Genetic variation in growth traits and morphological characteristics of eastern cottonwood (Populus deltoides Bartr.) hybrids at nursery stage. Sci Res Essays 5:962–969
    Robinson A, Mansfield SD (2011) Metabolomics in poplar. In: Genetics, genomics and breeding of poplar. Science Publishers, pp 166-191. doi:10.​1201/​b10819-14
    Rohde A et al (2011) Bud set in poplar—genetic dissection of a complex trait in natural and hybrid populations. New Phytol 189:106–121. doi:10.​1111/​j.​1469-8137.​2010.​03469.​x CrossRef PubMed
    Sauter J, van Cleve B (1992) Seasonal variation of amino acids in the xylem sap of “Populus x canadensis” and its relation to protein body mobilization. Trees 7:26–32. doi:10.​1007/​BF00225228 CrossRef
    Sauter J, van Cleve B (1994) Storage, mobilization and interrelations of starch, sugars, protein and fat in the ray storage tissue of poplar trees. Trees 8:297–304. doi:10.​1007/​BF00202674 CrossRef
    Scaracia-Mugnozza GE, Ceulemans R, Heilman PE, Isebrands JG, Stettler RF, Hinckley TM (1997) Production physiology and morphology of Populus species and their hybrids grown under short rotation. II. Biomass components and harvest index of hybrid and parental species clones. Can J Forest Res 27:285–294. doi:10.​1139/​x96-180 CrossRef
    Slavov GT, Zhelev P (2010) Salient biological features, systematics, and genetic variation of Populus. In: Jansson S, Bhalerao RP, Groover A (eds) Genetics and genomics of Populus, vol 8. Plant genetics and genomics: crops and models. pp 15-38
    Smilde AK, Jansen JJ, Hoefsloot HCJ, Lamers R-JAN, van der Greef J, Timmerman ME (2005) ANOVA-simultaneous component analysis (ASCA): a new tool for analyzing designed metabolomics data. Bioinformatics 21:3043–3048. doi:10.​1093/​bioinformatics/​bti476 CrossRef PubMed
    Soolanayakanahally RY, Guy RD, Silim SN, Drewes EC, Schroeder WR (2009) Enhanced assimilation rate and water use efficiency with latitude through increased photosynthetic capacity and internal conductance in balsam poplar (Populus balsamifera L.). Plant Cell Environ 32:1821–1832. doi:10.​1111/​j.​1365-3040.​2009.​02042.​x CrossRef PubMed
    Stanton BJ, Neale D, Li S (2010) Populus breeding: from the classical to the genomic approach. In: Jansson S, Bhalerao R, Groover A (eds) Genetics and genomics of Populus, vol 8, Plant genetics and genomics: crops and models. Springer, New York, pp 309–348. doi:10.​1007/​978-1-4419-1541-2_​10 CrossRef
    Stettler RF, Bradshaw HD, Heilman P, Hinckley T (1996) Biology of Populus and its implications for management and conservation. NRC Research Press. doi:10.​1139/​9780660165066
    Sticklen MB (2008) Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol. Nat Rev Genet 9:433–443CrossRef PubMed
    Szarka A, Tomasskovics B, Bánhegyi G (2012) The ascorbate-glutathione-α-tocopherol triad in abiotic stress response. Int J Mol Sci 13:4458–4483. doi:10.​3390/​ijms13044458 PubMedCentral CrossRef PubMed
    Wegrzyn JL et al (2010) Association genetics of traits controlling lignin and cellulose biosynthesis in black cottonwood (Populus trichocarpa, Salicaceae) secondary xylem. New Phytol 188:515–532. doi:10.​1111/​j.​1469-8137.​2010.​03415.​x CrossRef PubMed
    Xia J, Mandal R, Sinelnikov IV, Broadhurst D, Wishart DS (2012) MetaboAnalyst 2.0—a comprehensive server for metabolomic data analysis. Nucleic Acids Res 40:W127–W133. doi:10.​1093/​nar/​gks374 PubMedCentral CrossRef PubMed
    Zabek LM, Prescott CE (2006) Biomass equations and carbon content of aboveground leafless biomass of hybrid poplar in Coastal British Columbia. For Ecol Manage 223:291–302. doi:10.​1016/​j.​foreco.​2005.​11.​009 CrossRef
    Zamudio F, Wolfinger R, Stanton B, Guerra F (2008) The use of linear mixed model theory for the genetic analysis of repeated measures from clonal tests of forest trees I. A focus on spatially repeated data. Tree Gen Genomes 4:299–313. doi:10.​1007/​s11295-007-0110-4 CrossRef
    Zhang X, Wu N, Li C (2005) Physiological and growth responses of Populus davidiana ecotypes to different soil water contents. J Arid Environ 60:567–579. doi:10.​1016/​j.​jaridenv.​2004.​07.​008 CrossRef
    Zhao F, Gao R, Shen Y, Su X, Zhang B (2006) Foliar carbon isotope composition (δ13C) and water use efficiency of different Populus deltoides clones under water stress. Front Forest China 1:89–94. doi:10.​1007/​s11461-005-0005-1 CrossRef
    Ziebell AL et al (2013) Sunflower as a biofuels crop: an analysis of lignocellulosic chemical properties. Biomass Bioenergy 59:208–217. doi:10.​1016/​j.​biombioe.​2013.​06.​009 CrossRef
    Zobel B, Jett JB (1995) Genetics of wood production. Springer, Berlin, Heidelberg. doi:10.​1007/​978-3-642-79514-5 CrossRef
  • 作者单位:Fernando P. Guerra (1) (7)
    James H. Richards (3)
    Oliver Fiehn (4)
    Randi Famula (1)
    Brian J. Stanton (5)
    Richard Shuren (5)
    Robert Sykes (6)
    Mark F. Davis (6)
    David B. Neale (1) (2)

    1. Department of Plant Sciences, University of California at Davis, 262C Robbins Hall, Mail Stop 4, Davis, CA, 95616, USA
    7. Instituto de Ciencias Biológicas, Universidad de Talca, P.O. Box 747, Talca, Chile
    3. Department of Land, Air and Water Resources, University of California, Davis, CA, 95616, USA
    4. Department of Molecular and Cellular Biology & Genome Center, University of California, Davis, CA, 95616, USA
    5. Genetic Resources Conservation Program, GreenWood Resources, Portland, OR, 97201, USA
    6. National Renewable Energy Laboratory, Golden, CO, 80401, USA
    2. Bioenergy Research Center, University of California at Davis, Davis, CA, 95616, USA
  • 刊物主题:Forestry; Plant Genetics & Genomics; Plant Breeding/Biotechnology; Tree Biology; Biotechnology;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1614-2950
文摘
Populus trichocarpa is a biological model and a candidate species for bioethanol production. Although intraspecific variation is recognized, knowledge about genetic variation underlying the properties of its lignocellulosic biomass is still incomplete. Genetic variation is fundamental for continuing genetic improvement. In this study, we carried out a comprehensive phenotypic characterization of this species, analyzing a suite of quantitative traits associated with growth performance and wood quality. Traits involved growth rate (height, diameter), phenology (bud flush), and ecophysiology (leaf carbon and nitrogen content and isotopic composition), along with the chemical composition (contents of sugars and lignin) and metabolome of wood. We utilized 460 clones, representing 101 provenances collected from Oregon and Washington. These genotypes were planted in California, in 2009, and sampled after three growing seasons. Trait characterization was carried out by direct measurements, determination of stable isotopes (leaf samples), and technologies based on mass spectrometry (wood samples). A significant clonal effect was observed for most of the traits, explaining up to 76.4 % of total variation. Estimates of “broad-sense heritability” were moderate to high, reaching 0.96 (for date of bud flush). Phenotypic and genetic correlations varied extensively depending on specific traits. In addition, metabolomic analyses quantified 632 metabolites. Twenty-eight of these varied significantly with experimental factors, showing low to moderate heritability and correlation estimates. The results support the presence of significant clonal variation and inheritance for the assessed traits, required for response to genetic selection. Keywords Populus trichocarpa Growth Stable isotopes Lignin Cellulose Wood metabolome

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700