用户名: 密码: 验证码:
Real-time monitoring of immobilized single yeast cells through multifrequency electrical impedance spectroscopy
详细信息    查看全文
  • 作者:Zhen Zhu ; Olivier Frey ; Felix Franke…
  • 关键词:Microfluidics ; Single ; cell analysis ; Electrical impedance spectroscopy ; Cell trapping ; S. cerevisiae
  • 刊名:Analytical and Bioanalytical Chemistry
  • 出版年:2014
  • 出版时间:November 2014
  • 年:2014
  • 卷:406
  • 期:27
  • 页码:7015-7025
  • 全文大小:1,680 KB
  • 参考文献:1. Altschuler SJ, Wu LF (2010) Cell 141:559-63 CrossRef
    2. Dexter DL, Kowalski HM, Blazar BA, Fligiel Z, Vogel R, Heppner GH (1978) Cancer Res 38(10):3174-181
    3. Dexter DL, Spremulli EN, Fligiel Z, Barbosa JA, Vogel R, VanVoorhees A, Calabresi P (1981) Am J Med 71(6):949-56 CrossRef
    4. Elowitz MB, Levine AJ, Siggia ED, Swain PS (2002) Science 297(5584):1183-186 CrossRef
    5. Fritzsch FSO, Dusny C, Frick O, Schmid A (2012) Annu Rev Chem Biomol Eng 3(1):129-55 CrossRef
    6. Schubert C (2011) Nature 480(7375):133-37 CrossRef
    7. Di Carlo D, Lee LP (2006) Anal Chem 78(23):7918-925 CrossRef
    8. Macey MG (2007) Flow cytometry: principles and applications. Humana, Totowa CrossRef
    9. Nolan JP, Sklar LA (1998) Nat Biotech 16(7):633-38 CrossRef
    10. Krutzik PO, Nolan GP (2006) Nat Methods 3(5):361-68 CrossRef
    11. Lecault V, White AK, Singhal A, Hansen CL (2012) Curr Opin Chem Biol 16(3-):381-90 CrossRef
    12. Yin H, Marshall D (2012) Curr Opin Biotech 23(1):110-19 CrossRef
    13. Morgan H, Sun T, Holmes D, Gawad S, Green NG (2007) J Phys D: Appl Phys 40(1):61-0 CrossRef
    14. Heileman K, Daoud J, Tabrizian M (2013) Biosens Bioelectron 49:348-59 CrossRef
    15. Holzapfel C, Vienken J, Zimmermann U (1982) J Membr Biol 67(1):13-6 CrossRef
    16. Jones TB (2003) IEEE Eng Med Biol 22(6):33-2 CrossRef
    17. Gawad S, Cheung K, Seger U, Bertsch A, Renaud P (2004) Lab Chip 4(3):241-51 CrossRef
    18. Han SI, Joo YD, Han KH (2013) Analyst (Cambridge, U K) 138(5):1529-537 CrossRef
    19. Valero A, Braschler T, Rauch A, Demierre N, Barral Y, Renaud P (2011) Lab Chip 11(10):1754-760 CrossRef
    20. Vahey MD, Pesudo LQ, Svensson JP, Samson LD, Voldman J (2013) Lab Chip 13(14):2754-763 CrossRef
    21. Sun T, Morgan H (2010) Microfluid Nanofluid 8(4):423-43 CrossRef
    22. Haandbaek N, Burgel SC, Heer F, Hierlemann A (2014) Lab Chip 14(2):369-77 CrossRef
    23. Yang L, Arias LR, Lane T, Yancey M, Mamouni J (2011) Anal Bioanal Chem 399(5):1823-833 CrossRef
    24. Holmes D, Pettigrew D, Reccius CH, Gwyer JD, van Berkel C, Holloway J, Davies DE, Morgan H (2009) Lab Chip 9(20):2881-889 CrossRef
    25. Holmes D, Morgan H (2010) Anal Chem 82(4):1455-461 CrossRef
    26. Du E, Ha S, Diez-Silva M, Dao M, Suresh S, Chandrakasan AP (2013) Lab Chip 13(19):3903-909 CrossRef
    27. Song H, Wang Y, Rosano JM, Prabhakarpandian B, Garson C, Pant K, Lai E (2013) Lab Chip 13(12):2300-310 CrossRef
    28. Chen J, Zheng Y, Tan Q, Shojaei-Baghini E, Zhang YL, Li J, Prasad P, You L, Wu XY, Sun Y (2011) Lab Chip 11(18):3174-181 CrossRef
    29. Zheng Y, Shojaei-Baghini E, Azad A, Wang C, Sun Y (2012) Lab Chip 12(14):2560-567 CrossRef
    30. Asphahani F, Wang K, Thein M, Veiseh O, Yung S, Xu J, Zhang MQ (2011) Phys Biol 8(1):15006 CrossRef
    31. Ghenim L, Kaji H, Hoshino Y, Ishibashi T, Haguet V, Gidrol X, Nishizawa M (2010) Lab Chip 10(19):2546-550 CrossRef
    32. Park H, Kim D, Yun KS (2010) Sens Act B 150(1):167-73 CrossRef
    33. Lan KC, Jang LS (2011) Biosens Bioelectron 26(5):2025-031 CrossRef
    34. Malleo D, Nevill JT, Lee LP, Morgan H (2010) Microfluid Nanofluid 9(2-):191-98 CrossRef
    35. Zhu Z, Frey O, Ottoz DS, Rudolf F, Hierlemann A (2012) Lab Chip 12(5):906-15 CrossRef
    36. Zhu Z, Frey O, Haandbaek N, Ottoz DS, Rudolf F, Hierlemann A (2013) In: Proceedings of the international conference on solid state sensors and actuators, transducers -3. Barcelona, Spain, pp 1527-530
    37. Jolliffe IT (2002) Principle component analysis, 2nd edn. Springer, New York
    38. McLachlan GJ (2004) Discriminant analysis and statistical pattern recognition. Wiley, Hoboken
  • 作者单位:Zhen Zhu (1) (2)
    Olivier Frey (1)
    Felix Franke (1)
    Niels Haandb?k (1)
    Andreas Hierlemann (1)

    1. Bio Engineering Laboratory (BEL), Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland
    2. Key Lab of MEMS of Ministry of Education, Southeast University, Sipailou 2, Nanjing, 210096, China
  • ISSN:1618-2650
文摘
We present a microfluidic device, which enables single cells to be reliably trapped and cultivated while simultaneously being monitored by means of multifrequency electrical impedance spectroscopy (EIS) in the frequency range of 10?kHz-0?MHz. Polystyrene beads were employed to characterize the EIS performance inside the microfluidic device. The results demonstrate that EIS yields a low coefficient of variation in measuring the diameters of captured beads (~0.13?%). Budding yeast, Saccharomyces cerevisiae, was afterwards used as model organism. Single yeast cells were immobilized and measured by means of EIS. The bud growth was monitored through EIS at a temporal resolution of 1?min. The size increment of the bud, which is difficult to determine optically within a short time period, can be clearly detected through EIS signals. The impedance measurements also reflect the changes in position or motion of single yeast cells in the trap. By analyzing the multifrequency EIS data, cell motion could be qualitatively discerned from bud growth. The results demonstrate that single-cell EIS can be used to monitor cell growth, while also detecting potential cell motion in real-time and label-free approach, and that EIS constitutes a sensitive tool for dynamic single-cell analysis. Figure ?/em>

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700