Age-related synaptic loss of the medial olivocochlear efferent innervation
详细信息    查看全文
  • 作者:Benjamin Fu (1)
    Colleen Le Prell (2)
    Dwayne Simmons (3)
    Debin Lei (1)
    Angela Schrader (1)
    Amelia B Chen (1)
    Jianxin Bao (1) (4) (5)
  • 刊名:Molecular Neurodegeneration
  • 出版年:2010
  • 出版时间:December 2010
  • 年:2010
  • 卷:5
  • 期:1
  • 全文大小:1373KB
  • 参考文献:1. Yankner BA, Lu T, Loerch P: The aging brain. / Annu Rev Pathol 2008, 3: 41鈥?6. CrossRef
    2. Bao J, Ohlemiller KK: Age related loss of spiral ganglion neurons. / Hear Res 2009, 264: 93鈥?7. CrossRef
    3. Jennings CR, Jones NS: Presbycusis. / J Laryngol Otol 2001, 115: 171鈥?78.
    4. Gates GA, Mills JH: Presbycusis. / Lancet 2005, 366: 1111鈥?120. CrossRef
    5. Ohlemiller KK: Contributions of mouse models to understanding of age- and noise-related hearing loss. / Brain Res 2006, 1091: 89鈥?02. CrossRef
    6. Schuknecht HF, Gacek MR: Cochlear pathology in presbycusis. / Ann Otol Rhinol Laryngol 1993, 102: 1鈥?6.
    7. Schacht J, Hawkins JE: Sketches of otohistory. Part 9: presbycusis. / Audiol Neurotol 2005, 10: 243鈥?47. CrossRef
    8. Ohlemiller KK, Frisina RD: Clinical characterization of age-related hearing loss and its neural and molecular bases. In / Auditory Trauma, Protection and Treatment. Edited by: Schacht J, Popper A, Fay R. New York: Springer-Verlag; 2009:45鈥?94.
    9. Stamataki S, Francis HW, Lehar M, May BJ, Ryugo DK: Synaptic alterations at inner hair cells precede spiral ganglion cell loss in aging C57BL/6J mice. / Hear Res 2006, 221: 104鈥?18. CrossRef
    10. Kim S-H, Frisina DR, Frisina RD: Effects of age on contralateral suppression of distortion product otoacoustic emissions in human listeners with normal hearing. / Audiol Neurotol 2002, 7: 348鈥?57. CrossRef
    11. Jacobson M, Kim S-H, Romney J, Zhu X, Frisina RD: Contralateral suppression of distortion-product otoacoustic emissions declines with age: a comparison of findings in CBA mice with human listeners. / Laryngoscope 2003, 113: 1707鈥?713. CrossRef
    12. Varghese GI, Zhu X, Frisina RD: Age-related declines in contralateral suppression of distortion product otoacoustic emissions utilizing pure tones in CBA/CAJ mice. / Hear Res 2005, 209: 60鈥?7. CrossRef
    13. Zhu H, Yang H, Owen MR: Combined microarray analysis uncovers self-renewal related signaling in mouse embryonic stem cells. / Syst Synth Bio 2007, 1: 171鈥?81. CrossRef
    14. Kirk EC, Smith DW: Protection from acoustic trauma is not a primary function of the medial olivocochlear efferent system. / J Assoc Res Otolaryngol 2003, 4: 445鈥?65. CrossRef
    15. Maison SF, Vetter DE, Liberman MC: A novel effect of cochlear efferents: in vivo response enhancement does not require 伪9 cholinergic receptors. / J Neurophysiol 2007, 97: 3269鈥?278. CrossRef
    16. Elgoyhen AB, Katz E, Fuchs PA: The nicotinic receptor of cochlear hair cells: a possible pharmacotherapeutic target? / Biochem Pharmacol 2009, 78: 712鈥?19. CrossRef
    17. Rasmussen GL: The olivary penduncle and other fiber projections of the superior olivary complex. / J Comp Neurol 1946, 84: 141鈥?19. CrossRef
    18. Warr WB, Guinan JJ Jr: Efferent innervation of the organ of corti: two separate systems. / Brain Res 1979, 173: 152鈥?55. CrossRef
    19. Simmons DD: Development of the inner ear efferent system across vertebrate species. / J Neurobiol 2002, 53: 228鈥?50. CrossRef
    20. Darrow KN, Maison SF, Liberman MC: Selective removal of lateral olivocochlear efferents increases vulnerability to acute acoustic injury. / J Neurophysiol 2007, 97: 1775鈥?785. CrossRef
    21. Le Prell CG, Halsey K, Hughes LF, Dolan DF, Bledsoe SC Jr: Disruption of lateral olivocochlear neurons via a dopaminergic neurotoxin depresses sound-evoked auditory nerve activity. / J Assoc Res Otolaryngol 2005, 6: 48鈥?2. CrossRef
    22. Maison SF, Emeson RB, Adams JC, Luebke AE, Liberman MC: Loss of 伪CGRP reduces sound-evoked activity in the cochlear nerve. / J Neurophysiol 2003, 90: 2941鈥?949. CrossRef
    23. Bergeron AL, Schrader A, Yang D, Osman AA, Simmons DD: The final stage of cholinergic differentiation occurs below inner hair cells during development of the rodent cochlea. / J Assoc Res Otolaryngol 2005, 6: 401鈥?15.
    24. Liberman MC, Brown MC: Physiology and anatomy of single olivocochlear neurons in the cat. / Hear Res 1986, 24: 17鈥?6. CrossRef
    25. Guinan JJ Jr, Gifford ML: Effects of electrical stimulation of efferent olivocochlear neurons on cat auditory-nerve fibers. I. Rate-level functions. / Hear Res 1988, 33: 97鈥?14. CrossRef
    26. Guinan JJ Jr, Gifford ML: Effects of electrical stimulation of efferent olivocochlear neurons on cat auditory-nerve fibers. II. Spontaneous rate. / Hear Res 1988, 33: 115鈥?28. CrossRef
    27. Guinan JJ Jr, Gifford ML: Effects of electrical stimulation of efferent olivocochlear neurons on cat auditory-nerve fibers. III. Turning curves and thresholds at CF. / Hear Res 1988, 37: 29鈥?6. CrossRef
    28. Liberman MC: Rapid assessment of sound-evoked olivocochlear feedback: suppression of compound action potentials by contralateral sound. / Hear Res 1989, 38: 47鈥?6. CrossRef
    29. Collet L, Kemp DT, Veuillet E, Duclax R, Moulin A, Morgan A: Effect of contralateral auditory stimuli on active cochlear micromechanical properties in human subjects. / Hear Res 1990, 43: 251鈥?61. CrossRef
    30. Moulin A, Collet L, Duclax R: Contralateral auditory stimulation alters acoustic distortion products in humans. / Hear Res 1993, 65: 193鈥?10. CrossRef
    31. Chery-Croze S, Moulin A, Collet L: Effect of contralateral sound stimulation on distortion product 2f1-f2 in humans: evidence of frequency specificity. / Hear Res 1993, 68: 53鈥?8. CrossRef
    32. Giraud AL, Garnier S, Micheyl C, Lina G, Chays A, Chery-Croze S: Auditory efferents involved in speech-in-noise intelligibility. / Neuroreport 1997, 8: 1779鈥?783. CrossRef
    33. Mulders WH, Robertson D: Diverse responses of single auditory afferent fibres to electrical stimulation of the inferior colliculus in guinea-pig. / Exp Brain Res 2005, 160: 235鈥?44. CrossRef
    34. Vetter DE, Liberman MC, Mann J, Barhanin J, Boulter J, Brown MC, Saffiote-Kolman J, Heinemann SF, Elgoyhem AB: Role of 伪9 nicotinic Ach receptor subunits in the development and function of cochlear efferent innervation. / Neuron 1999, 23: 93鈥?03. CrossRef
    35. Puel JL, Rebillard G: Effect of contralateral sound stimulation on the distortion product 2F1-F2: evidence that the medial efferent system is involved. / J Acoust Soc Am 1990, 99: 3572鈥?584.
    36. Puria S, Guinan JJ Jr, Liberman MC: Efferent-mediated effects of contralateral sound: suppression of CAP versus ear-canal distortion products. / J Acoust Soc Am 1996, 99: 500鈥?07. CrossRef
    37. Kujawa SG, Liberman MC: Effects of olivocochlear feedback on distortion product otoacoustic emissions in guinea pig. / J Assoc Res Otolaryngol 2001, 2 (3) : 268鈥?78.
    38. Jacobson M, Kim S-H, Romney J, Zhu X, Frisina RD: Contralateral suppression of distortion-product otoacoustic emissions declines with age: a comparison of findings in CBA mice with human listeners. / Laryngoscope 2003, 113: 1707鈥?713. CrossRef
    39. Liberman MC, Puria S, Guinan JJ Jr: The ipsilaterally evoked olivocochlear reflex causes rapid adaptation of the 2f1-f2 distortion product otoacoustic emission. / J Acoust Soc Am 1996, 99: 572鈥?84. CrossRef
    40. Sun X-M, Kim DO: Adaptation of 2 f 1鈥? f 2 distortion product otoacoustic emission in young-adult and old CBA and C57 mice. / J Acoust Soc Am 1999, 105: 3399鈥?409. CrossRef
    41. Mukari SZ, Mamat WH: Medial olivocochlear functioning and speech perception in noise in older adults. / Audiol Neurootol 2008, 13: 328鈥?34. CrossRef
    42. Feng G, Mellor RH, Bernstein M, Keller-Peck C, Nguyen QT, Wallace M: Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. / Neuron 2000, 28: 41鈥?1. CrossRef
    43. Ou HC, Harding GW, Bohne BA: An anatomically based frequency-place map for the mouse cochlea. / Hear Res 2000, 145: 123鈥?29. CrossRef
    44. Zhu X, Vasilyeva ON, Kim S, Jacobson M, Romney J, Waterman MS, Tuttle D, Frisina RD: Auditory efferent feedback system deficits precede age-related hearing loss: contralateral suppression of otoacoustic emissions in mice. / J Comp Neurol 2007, 503 (5) : 593鈥?04. CrossRef
    45. Jin DX, Lin Z, Lei D, Bao J: The role of glucocorticoids for spiral ganglion neuron survival. / Brain Res 2009, 1277: 3鈥?1. CrossRef
    46. Finch CE: Neuron atrophy during aging: programmed or sporadic? / Trends Neurosci 1993, 16: 104鈥?10. CrossRef
    47. Ishida Y, Shirokawa T, Miyaishi O, Komatsu Y, Isobe K: Age-dependant changes in projections from locus coeruleus to hippocampus dentate gyrus and frontal cortex. / Eur J Neurosci 2000, 12: 1263鈥?270. CrossRef
    48. Rapp PR, Gallagher M: Pre served neuron number in the hippocampus of aged rats with spatial learning deficits. / Proc Natl Acad Sci (USA) 1996, 93: 9926鈥?930. CrossRef
    49. Scheff SW, Price DA: Synaptic pathology in Alzheimer's disease: a review of ultrastructural findings. / Neurobiol Aging 2003, 24: 1029鈥?046. CrossRef
    50. Morrison JH, Hof PR: Life and death of neurons in the aging cerebral cortex. / Int Rev Neurobiol 2007, 81: 41鈥?7. CrossRef
    51. Coggan JS, Grutzendler J, Bishop DL, Cook MR, Gan W, Heym J, Lichtman JW: Age-associated synapse elimination in mouse parasympathetic ganglia. / J Neurobiol 2004, 60: 214鈥?26. CrossRef
    52. Rattner A, Nathans J: Macular degeneration: recent advances and therapeutic opportunities. / Nat Rev Neurosci 2006, 7: 860鈥?72. CrossRef
    53. Thrasivoulou C, Soubeyre V, Ridha H, Giuliani D, Giaroni C, Michael GJ, Saffrey MJ, Cowen T: Reactive oxygen species, dietary restriction and neurotrophic factors in age-related loss of myenteric neurons. / Aging Cell 2006, 5: 247鈥?57. CrossRef
    54. Zimmermann CE, Burgess BJ, Nadol JB: Patterns of degeneration in the human cochlear nerve. / Hear Res 1995, 90: 192鈥?01. CrossRef
    55. White JA, Burgess BJ, Hall RD, Nadol JB: Pattern of degeneration of the spiral ganglion cell and its processes in the C57BL/6J mouse. / Hear Res 2000, 141: 2鈥?8. CrossRef
    56. Noben-Trauth K, Zheng QY, Johnson KR: Association of cadherin 23 with polygenic inheritance and genetic modification of sensorineural hearing loss. / Nat Genet 2003, 35: 21鈥?3. CrossRef
    57. Smith TD, Adams MM, Gallagher M, Morrison JH, Rapp PR: Circuit-specific alterations in synaptophysin immunoreactivity predict spatial learning impairments in aged rats. / J Neurosci 2000, 20: 6587鈥?593.
    58. Bao J, Lin H, Ouyang Y, Lei D, Osman A, Kim TW, Mei L, Dai P, Ohlemiller KK, Ambron RT: Activity-dependent transcription regulation of PSD-95 by neuregulin-1 and Eos. / Nat Neurosci 2004, 7: 1250鈥?258. CrossRef
  • 作者单位:Benjamin Fu (1)
    Colleen Le Prell (2)
    Dwayne Simmons (3)
    Debin Lei (1)
    Angela Schrader (1)
    Amelia B Chen (1)
    Jianxin Bao (1) (4) (5)

    1. Department of Otolaryngology, Washington University, 63110, St. Louis, MO, USA
    2. Department of Communicative Disorders, Speech and Hearing Center, University of Florida, 32610, Gainesville, FL, USA
    3. Department of Physiological Science, Brain Research Institute UCLA, 90095, Los Angeles, CA, USA
    4. Center for Aging, Washington University, 63110, St. Louis, MO, USA
    5. The Division of Biology & Biomedical Science and Neuroscience Program, Washington University, 63110, St. Louis, MO, USA
文摘
Age-related functional decline of the nervous system is consistently observed, though cellular and molecular events responsible for this decline remain largely unknown. One of the most prevalent age-related functional declines is age-related hearing loss (presbycusis), a major cause of which is the loss of outer hair cells (OHCs) and spiral ganglion neurons. Previous studies have also identified an age-related functional decline in the medial olivocochlear (MOC) efferent system prior to age-related loss of OHCs. The present study evaluated the hypothesis that this functional decline of the MOC efferent system is due to age-related synaptic loss of the efferent innervation of the OHCs. To this end, we used a recently-identified transgenic mouse line in which the expression of yellow fluorescent protein (YFP), under the control of neuron-specific elements from the thy1 gene, permits the visualization of the synaptic connections between MOC efferent fibers and OHCs. In this model, there was a dramatic synaptic loss between the MOC efferent fibers and the OHCs in older mice. However, age-related loss of efferent synapses was independent of OHC status. These data demonstrate for the first time that age-related loss of efferent synapses may contribute to the functional decline of the MOC efferent system and that this synaptic loss is not necessary for age-related loss of OHCs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700