Deterioration of the Medial Olivocochlear Efferent System Accelerates Age-Related Hearing Loss in Pax2-Isl1 Transgenic Mice
详细信息    查看全文
  • 作者:Tetyana Chumak ; Romana Bohuslavova ; Iva Macova ; Nicole Dodd…
  • 关键词:Medial olivocochlear efferent system ; Islet1 transcription factor ; Age ; related hearing loss ; Outer hair cells ; Transgenic mouse
  • 刊名:Molecular Neurobiology
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:53
  • 期:4
  • 页码:2368-2383
  • 全文大小:6,610 KB
  • 参考文献:1.Chen J, Streit A (2013) Induction of the inner ear: stepwise specification of otic fate from multipotent progenitors. Hear Res 297:3–12. doi:10.​1016/​j.​heares.​2012.​11.​018 CrossRef PubMed
    2.Ma Q, Anderson DJ, Fritzsch B (2000) Neurogenin 1 null mutant ears develop fewer, morphologically normal hair cells in smaller sensory epithelia devoid of innervation. J Assoc Res Otolaryngol 1(2):129–143CrossRef PubMed PubMedCentral
    3.Matei V, Pauley S, Kaing S, Rowitch D, Beisel KW, Morris K, Feng F, Jones K et al (2005) Smaller inner ear sensory epithelia in Neurog 1 null mice are related to earlier hair cell cycle exit. Dev Dyn 234(3):633–650CrossRef PubMed PubMedCentral
    4.Raft S, Groves AK (2014) Segregating neural and mechanosensory fates in the developing ear: patterning, signaling, and transcriptional control. Cell Tissue Res. doi:10.​1007/​s00441-014-1917-6 PubMed PubMedCentral
    5.Kelley MW (2006) Regulation of cell fate in the sensory epithelia of the inner ear. Nat Rev Neurosci 7(11):837–849CrossRef PubMed
    6.Fritzsch B, Beisel KW, Hansen LA (2006) The molecular basis of neurosensory cell formation in ear development: a blueprint for hair cell and sensory neuron regeneration? Bioessays 28(12):1181–1193CrossRef PubMed PubMedCentral
    7.Bouchard M, de Caprona D, Busslinger M, Xu P, Fritzsch B (2010) Pax2 and Pax8 cooperate in mouse inner ear morphogenesis and innervation. BMC Dev Biol 10:89. doi:10.​1186/​1471-213X-10-89 CrossRef PubMed PubMedCentral
    8.Kiernan AE, Pelling AL, Leung KK, Tang AS, Bell DM, Tease C, Lovell-Badge R, Steel KP et al (2005) Sox2 is required for sensory organ development in the mammalian inner ear. Nature 434(7036):1031–1035CrossRef PubMed
    9.Jahan I, Pan N, Kersigo J, Fritzsch B (2013) Beyond generalized hair cells: molecular cues for hair cell types. Hear Res 297:30–41. doi:10.​1016/​j.​heares.​2012.​11.​008 CrossRef PubMed PubMedCentral
    10.Nichols DH, Pauley S, Jahan I, Beisel KW, Millen KJ, Fritzsch B (2008) Lmx1a is required for segregation of sensory epithelia and normal ear histogenesis and morphogenesis. Cell Tissue Res 334(3):339–358. doi:10.​1007/​s00441-008-0709-2 CrossRef PubMed PubMedCentral
    11.Deng M, Luo XJ, Pan L, Yang H, Xie X, Liang G, Huang L, Hu F et al (2014) LMO4 functions as a negative regulator of sensory organ formation in the mammalian cochlea. J Neurosci 34(30):10072–10077. doi:10.​1523/​JNEUROSCI.​0352-14.​2014 CrossRef PubMed PubMedCentral
    12.Bhati M, Lee C, Nancarrow AL, Lee M, Craig VJ, Bach I, Guss JM, Mackay JP et al (2008) Implementing the LIM code: the structural basis for cell type-specific assembly of LIM-homeodomain complexes. EMBO J 27(14):2018–2029. doi:10.​1038/​emboj.​2008.​123 CrossRef PubMed PubMedCentral
    13.Hobert O, Westphal H (2000) Functions of LIM-homeobox genes. Trends Genet 16(2):75–83CrossRef PubMed
    14.Pfaff SL, Mendelsohn M, Stewart CL, Edlund T, Jessell TM (1996) Requirement for LIM homeobox gene Isl1 in motor neuron generation reveals a motor neuron-dependent step in interneuron differentiation. Cell 84(2):309–320CrossRef PubMed
    15.Sun Y, Dykes IM, Liang X, Eng SR, Evans SM, Turner EE (2008) A central role for Islet1 in sensory neuron development linking sensory and spinal gene regulatory programs. Nat Neurosci 11(11):1283–1293. doi:10.​1038/​nn.​2209 CrossRef PubMed PubMedCentral
    16.Lin L, Bu L, Cai CL, Zhang X, Evans S (2006) Isl1 is upstream of sonic hedgehog in a pathway required for cardiac morphogenesis. Dev Biol 295(2):756–763CrossRef PubMed
    17.Cai CL, Liang X, Shi Y, Chu PH, Pfaff SL, Chen J, Evans S (2003) Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell 5(6):877–889CrossRef PubMed
    18.Elshatory Y, Everhart D, Deng M, Xie X, Barlow RB, Gan L (2007) Islet-1 controls the differentiation of retinal bipolar and cholinergic amacrine cells. J Neurosci 27(46):12707–12720. doi:10.​1523/​jneurosci.​3951-07.​2007 CrossRef PubMed PubMedCentral
    19.Whitney IE, Raven MA, Ciobanu DC, Poche RA, Ding Q, Elshatory Y, Gan L, Williams RW et al (2011) Genetic modulation of horizontal cell number in the mouse retina. Proc Natl Acad Sci U S A 108(23):9697–9702. doi:10.​1073/​pnas.​1103253108 CrossRef PubMed PubMedCentral
    20.Liang X, Song MR, Xu Z, Lanuza GM, Liu Y, Zhuang T, Chen Y, Pfaff SL et al (2011) Isl1 is required for multiple aspects of motor neuron development. Mol Cell Neurosci 47(3):215–222. doi:10.​1016/​j.​mcn.​2011.​04.​007 CrossRef PubMed PubMedCentral
    21.Li H, Liu H, Sage C, Huang M, Chen ZY, Heller S (2004) Islet-1 expression in the developing chicken inner ear. J Comp Neurol 477(1):1–10CrossRef PubMed
    22.Radde-Gallwitz K, Pan L, Gan L, Lin X, Segil N, Chen P (2004) Expression of Islet1 marks the sensory and neuronal lineages in the mammalian inner ear. J Comp Neurol 477(4):412–421CrossRef PubMed PubMedCentral
    23.Huang M, Sage C, Li H, Xiang M, Heller S, Chen ZY (2008) Diverse expression patterns of LIM-homeodomain transcription factors (LIM-HDs) in mammalian inner ear development. Dev Dyn 237(11):3305–3312. doi:10.​1002/​dvdy.​21735 CrossRef PubMed PubMedCentral
    24.Fritzsch B, Pan N, Jahan I, Elliott KL (2014) Inner ear development: building a spiral ganglion and an organ of Corti out of unspecified ectoderm. Cell Tissue Res. doi:10.​1007/​s00441-014-2031-5
    25.Zheng QY, Johnson KR, Erway LC (1999) Assessment of hearing in 80 inbred strains of mice by ABR threshold analyses. Hear Res 130(1-2):94–107CrossRef PubMed PubMedCentral
    26.Rowitch DH, Kispert A, McMahon AP (1999) Pax-2 regulatory sequences that direct transgene expression in the developing neural plate and external granule cell layer of the cerebellum. Brain Res Dev Brain Res 117(1):99–108CrossRef PubMed
    27.Muller YL, Yueh YG, Yaworsky PJ, Salbaum JM, Kappen C (2003) Caudal dysgenesis in Islet-1 transgenic mice. Faseb J 17(10):1349–1351PubMed PubMedCentral
    28.Turgeon B, Meloche S (2009) Interpreting neonatal lethal phenotypes in mouse mutants: insights into gene function and human diseases. Physiol Rev 89(1):1–26. doi:10.​1152/​physrev.​00040.​2007 CrossRef PubMed
    29.Kersigo J, D'Angelo A, Gray BD, Soukup GA, Fritzsch B (2011) The role of sensory organs and the forebrain for the development of the craniofacial shape as revealed by Foxg1-cre-mediated microRNA loss. Genesis 49(4):326–341. doi:10.​1002/​dvg.​20714 CrossRef PubMed PubMedCentral
    30.Bolte S, Cordelieres FP (2006) A guided tour into subcellular colocalization analysis in light microscopy. J Microsc 224(Pt 3):213–232. doi:10.​1111/​j.​1365-2818.​2006.​01706.​x CrossRef PubMed
    31.Alvarez-Buylla A, Ling CY, Kirn JR (1990) Cresyl violet: a red fluorescent Nissl stain. J Neurosci Methods 33(2-3):129–133CrossRef PubMed
    32.Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9), e45CrossRef PubMed PubMedCentral
    33.Xia A, Song Y, Wang R, Gao SS, Clifton W, Raphael P, Chao SI, Pereira FA et al (2013) Prestin regulation and function in residual outer hair cells after noise-induced hearing loss. PLoS One 8(12), e82602. doi:10.​1371/​journal.​pone.​0082602 CrossRef PubMed PubMedCentral
    34.Bohuslavova R, Kolar F, Kuthanova L, Neckar J, Tichopad A, Pavlinkova G (2010) Gene expression profiling of sex differences in HIF1-dependent adaptive cardiac responses to chronic hypoxia. J Appl Physiol (1985) 109(4):1195–1202. doi:10.​1152/​japplphysiol.​00366.​2010 CrossRef
    35.Schoen CJ, Burmeister M, Lesperance MM (2013) Diaphanous homolog 3 (Diap3) overexpression causes progressive hearing loss and inner hair cell defects in a transgenic mouse model of human deafness. PLoS One 8(2), e56520. doi:10.​1371/​journal.​pone.​0056520 CrossRef PubMed PubMedCentral
    36.Favor J, Sandulache R, Neuhauser-Klaus A, Pretsch W, Chatterjee B, Senft E, Wurst W, Blanquet V et al (1996) The mouse Pax2(1Neu) mutation is identical to a human PAX2 mutation in a family with renal-coloboma syndrome and results in developmental defects of the brain, ear, eye, and kidney. Proc Natl Acad Sci U S A 93(24):13870–13875CrossRef PubMed PubMedCentral
    37.Fritzsch B (2003) Development of inner ear afferent connections: forming primary neurons and connecting them to the developing sensory epithelia. Brain Res Bull 60(5-6):423–433CrossRef PubMed PubMedCentral
    38.Dazert S, Feldman ML, Keithley EM (1996) Cochlear spiral ganglion cell degeneration in wild-caught mice as a function of age. Hear Res 100(1-2):101–106CrossRef PubMed
    39.Makary CA, Shin J, Kujawa SG, Liberman MC, Merchant SN (2011) Age-related primary cochlear neuronal degeneration in human temporal bones. J Assoc Res Otolaryngol 12(6):711–717. doi:10.​1007/​s10162-011-0283-2 CrossRef PubMed PubMedCentral
    40.Hans S, Liu D, Westerfield M (2004) Pax8 and Pax2a function synergistically in otic specification, downstream of the Foxi1 and Dlx3b transcription factors. Development 131(20):5091–5102. doi:10.​1242/​dev.​01346 CrossRef PubMed
    41.Copley CO, Duncan JS, Liu C, Cheng H, Deans MR (2013) Postnatal refinement of auditory hair cell planar polarity deficits occurs in the absence of Vangl2. J Neurosci 33(35):14001–14016. doi:10.​1523/​JNEUROSCI.​1307-13.​2013 CrossRef PubMed PubMedCentral
    42.Christophorou NA, Mende M, Lleras-Forero L, Grocott T, Streit A (2010) Pax2 coordinates epithelial morphogenesis and cell fate in the inner ear. Dev Biol 345(2):180–190. doi:10.​1016/​j.​ydbio.​2010.​07.​007 CrossRef PubMed PubMedCentral
    43.Lawoko-Kerali G, Milo M, Davies D, Halsall A, Helyer R, Johnson CM, Rivolta MN, Tones MA et al (2004) Ventral otic cell lines as developmental models of auditory epithelial and neural precursors. Dev Dyn 231(4):801–814CrossRef PubMed
    44.Martin GK, Vazquez AE, Jimenez AM, Stagner BB, Howard MA, Lonsbury-Martin BL (2007) Comparison of distortion product otoacoustic emissions in 28 inbred strains of mice. Hear Res 234(1-2):59–72. doi:10.​1016/​j.​heares.​2007.​09.​002 CrossRef PubMed
    45.Jones JM, Montcouquiol M, Dabdoub A, Woods C, Kelley MW (2006) Inhibitors of differentiation and DNA binding (Ids) regulate Math1 and hair cell formation during the development of the organ of Corti. J Neurosci 26(2):550–558CrossRef PubMed
    46.Schuknecht HF (1964) Further observations on the pathology of presbycusis. Arch Otolaryngol 80:369–382CrossRef PubMed
    47.Hofstetter P, Ding D, Powers N, Salvi RJ (1997) Quantitative relationship of carboplatin dose to magnitude of inner and outer hair cell loss and the reduction in distortion product otoacoustic emission amplitude in chinchillas. Hear Res 112(1-2):199–215CrossRef PubMed
    48.Trautwein P, Hofstetter P, Wang J, Salvi R, Nostrant A (1996) Selective inner hair cell loss does not alter distortion product otoacoustic emissions. Hear Res 96(1-2):71–82CrossRef PubMed
    49.Li D, Henley CM, O'Malley BW Jr (1999) Distortion product otoacoustic emissions and outer hair cell defects in the hyt/hyt mutant mouse. Hear Res 138(1-2):65–72CrossRef PubMed
    50.Popelar J, Groh D, Pelanova J, Canlon B, Syka J (2006) Age-related changes in cochlear and brainstem auditory functions in Fischer 344 rats. Neurobiol Aging 27(3):490–500. doi:10.​1016/​j.​neurobiolaging.​2005.​03.​001 CrossRef PubMed
    51.Dallos P, Wu X, Cheatham MA, Gao J, Zheng J, Anderson CT, Jia S, Wang X et al (2008) Prestin-based outer hair cell motility is necessary for mammalian cochlear amplification. Neuron 58(3):333–339. doi:10.​1016/​j.​neuron.​2008.​02.​028 CrossRef PubMed PubMedCentral
    52.Liberman MC, Gao J, He DZ, Wu X, Jia S, Zuo J (2002) Prestin is required for electromotility of the outer hair cell and for the cochlear amplifier. Nature 419(6904):300–304. doi:10.​1038/​nature01059 CrossRef PubMed
    53.Chan DK, Hudspeth AJ (2005) Ca2+ current-driven nonlinear amplification by the mammalian cochlea in vitro. Nat Neurosci 8(2):149–155. doi:10.​1038/​nn1385 CrossRef PubMed PubMedCentral
    54.Kennedy HJ, Crawford AC, Fettiplace R (2005) Force generation by mammalian hair bundles supports a role in cochlear amplification. Nature 433(7028):880–883. doi:10.​1038/​nature03367 CrossRef PubMed
    55.Adams JC, Schulte BA (1997) Histopathologic observations of the aging gerbil cochlea. Hear Res 104(1-2):101–111CrossRef PubMed
    56.Kawase T, Liberman MC (1993) Antimasking effects of the olivocochlear reflex. I Enhancement of compound action potentials to masked tones. J Neurophysiol 70(6):2519–2532PubMed
    57.May BJ, McQuone SJ (1995) Effects of bilateral olivocochlear lesions on pure-tone intensity discrimination in cats. Audit Neurosci 1(4):385–400
    58.Winslow RL, Sachs MB (1987) Effect of electrical stimulation of the crossed olivocochlear bundle on auditory nerve response to tones in noise. J Neurophysiol 57(4):1002–1021PubMed
    59.Lauer AM, May BJ (2011) The medial olivocochlear system attenuates the developmental impact of early noise exposure. J Assoc Res Otolaryngol 12(3):329–343. doi:10.​1007/​s10162-011-0262-7 CrossRef PubMed PubMedCentral
    60.Liberman MC (1991) The olivocochlear efferent bundle and susceptibility of the inner ear to acoustic injury. J Neurophysiol 65(1):123–132PubMed
    61.Maison SF, Luebke AE, Liberman MC, Zuo J (2002) Efferent protection from acoustic injury is mediated via alpha9 nicotinic acetylcholine receptors on outer hair cells. J Neurosci 22(24):10838–10846PubMed
    62.Liberman MC, Liberman LD, Maison SF (2014) Efferent feedback slows cochlear aging. J Neurosci 34(13):4599–4607. doi:10.​1523/​JNEUROSCI.​4923-13.​2014 CrossRef PubMed PubMedCentral
    63.Maison SF, Adams JC, Liberman MC (2003) Olivocochlear innervation in the mouse: immunocytochemical maps, crossed versus uncrossed contributions, and transmitter colocalization. J Comp Neurol 455(3):406–416. doi:10.​1002/​cne.​10490 CrossRef PubMed PubMedCentral
    64.Burgess BJ, Adams JC, Nadol JB Jr (1997) Morphologic evidence for innervation of Deiters' and Hensen's cells in the guinea pig. Hear Res 108(1-2):74–82CrossRef PubMed
    65.Matsunobu T, Chung JW, Schacht J (2001) Acetylcholine-evoked calcium increases in Deiters' cells of the guinea pig cochlea suggest alpha9-like receptors. J Neurosci Res 63(3):252–256CrossRef PubMed
    66.Parsa A, Webster P, Kalinec F (2012) Deiters cells tread a narrow path—the Deiters cells-basilar membrane junction. Hear Res 290(1-2):13–20. doi:10.​1016/​j.​heares.​2012.​05.​006 CrossRef PubMed PubMedCentral
    67.Nam JH, Fettiplace R (2010) Force transmission in the organ of Corti micromachine. Biophys J 98(12):2813–2821. doi:10.​1016/​j.​bpj.​2010.​03.​052 CrossRef PubMed PubMedCentral
    68.Yu N, Zhao HB (2009) Modulation of outer hair cell electromotility by cochlear supporting cells and gap junctions. PLoS One 4(11), e7923. doi:10.​1371/​journal.​pone.​0007923 CrossRef PubMed PubMedCentral
    69.Zhu Y, Liang C, Chen J, Zong L, Chen GD, Zhao HB (2013) Active cochlear amplification is dependent on supporting cell gap junctions. Nat Commun 4:1786. doi:10.​1038/​ncomms2806 CrossRef PubMed PubMedCentral
    70.Mellado Lagarde MM, Cox BC, Fang J, Taylor R, Forge A, Zuo J (2013) Selective ablation of pillar and Deiters' cells severely affects cochlear postnatal development and hearing in mice. J Neurosci 33(4):1564–1576. doi:10.​1523/​JNEUROSCI.​3088-12.​2013 CrossRef PubMed
    71.Simmons DJD, de Caprona DC, Fritzsch B (2011) Development of the inner ear efferent system. In: Auditory and vestibular efferents, vol 38. Springer, New York. doi:10.​1007/​978-1-4419-7070-1_​7 CrossRef
  • 作者单位:Tetyana Chumak (1)
    Romana Bohuslavova (2)
    Iva Macova (2)
    Nicole Dodd (2)
    Daniela Buckiova (1)
    Bernd Fritzsch (3)
    Josef Syka (1)
    Gabriela Pavlinkova (2)

    1. Institute of Experimental Medicine, CAS, Prague, Czechia
    2. Laboratory of Molecular Pathogenetics, Institute of Biotechnology, CAS, Prague 4, CZ-142 20, Prague, Czechia
    3. Department of Biology, University of Iowa, Iowa City, IA, 52242, USA
  • 刊物主题:Neurosciences; Neurobiology; Cell Biology; Neurology;
  • 出版者:Springer US
  • ISSN:1559-1182
文摘
The development, maturation, and maintenance of the inner ear are governed by temporal and spatial expression cascades of transcription factors that form a gene regulatory network. ISLET1 (ISL1) may be one of the major players in this cascade, and in order to study its role in the regulation of inner ear development, we produced a transgenic mouse overexpressing Isl1 under the Pax2 promoter. Pax2-regulated ISL1 overexpression increases the embryonic ISL1+ domain and induces accelerated nerve fiber extension and branching in E12.5 embryos. Despite these gains in early development, the overexpression of ISL1 impairs the maintenance and function of hair cells of the organ of Corti. Mutant mice exhibit hyperactivity, circling behavior, and progressive age-related decline in hearing functions, which is reflected in reduced otoacoustic emissions (DPOAEs) followed by elevated hearing thresholds. The reduction of the amplitude of DPOAEs in transgenic mice was first detected at 1 month of age. By 6–9 months of age, DPOAEs completely disappeared, suggesting a functional inefficiency of outer hair cells (OHCs). The timing of DPOAE reduction coincides with the onset of the deterioration of cochlear efferent terminals. In contrast to these effects on efferents, we only found a moderate loss of OHCs and spiral ganglion neurons. For the first time, our results show that the genetic alteration of the medial olivocochlear (MOC) efferent system induces an early onset of age-related hearing loss. Thus, the neurodegeneration of the MOC system could be a contributing factor to the pathology of age-related hearing loss.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700