Extracellular matrix protein 1 regulates cell proliferation and trastuzumab resistance through activation of epidermal growth factor signaling
详细信息    查看全文
  • 作者:Kyung-min Lee (1)
    Keesoo Nam (1)
    Sunhwa Oh (1)
    Juyeon Lim (1)
    Young-Pil Kim (1)
    Jong Won Lee (2)
    Jong-Han Yu (2)
    Sei-Hyun Ahn (2)
    Sung-Bae Kim (3)
    Dong-Young Noh (4)
    Taehoon Lee (5)
    Incheol Shin (1) (6)

    1. Department of Life Science
    ; Hanyang University ; 222 Wangshimni-ro ; Seoul ; 133-791 ; Republic of Korea
    2. Department of Surgery
    ; College of Medicine ; University of Ulsan and Asan Medical Center ; 88 Olympic 43-ro ; Seoul ; 138-736 ; Republic of Korea
    3. Department of Oncology
    ; College of Medicine ; University of Ulsan and Asan Medical Center ; 88 Olympic 43-ro ; Seoul ; 138-736 ; Republic of Korea
    4. Cancer Research Institute
    ; Seoul National University College of Medicine ; 101 Daehak-ro ; Seoul ; 110-744 ; Republic of Korea
    5. NOVA Cell Technology
    ; 77 Cheongam-ro ; Pohang ; 790-784 ; Republic of Korea
    6. Natural Science Institute
    ; Hanyang University ; 222 Wangshimni-ro ; Seoul ; 133-791 ; Republic of Korea
  • 刊名:Breast Cancer Research
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:16
  • 期:6
  • 全文大小:1,887 KB
  • 参考文献:1. Mathieu, E, Meheus, L, Raymackers, J, Merregaert, J (1994) Characterization of the osteogenic stromal cell line MN7: identification of secreted MN7 proteins using two-dimensional polyacrylamide gel electrophoresis, Western blotting, and microsequencing. J Bone Miner Res 9: pp. 903-913 CrossRef
    2. Smits, P, Poumay, Y, Karperien, M, Tylzanowski, P, Wauters, J, Huylebroeck, D, Ponec, M, Merregaert, J (2000) Differentiation-dependent alternative splicing and expression of the extracellular matrix protein 1 gene in human keratinocytes. J Invest Dermatol 114: pp. 718-724 CrossRef
    3. Han, Z, Ni, J, Smits, P, Underhill, CB, Xie, B, Chen, Y, Liu, N, Tylzanowski, P, Parmelee, D, Feng, P, Ding, I, Gao, F, Gentz, R, Huylebroeck, D, Merregaert, J, Zhang, L (2001) Extracellular matrix protein 1 (ECM1) has angiogenic properties and is expressed by breast tumor cells. FASEB J 15: pp. 988-994 CrossRef
    4. Hamada, T, McLean, WH, Ramsay, M, Ashton, GH, Nanda, A, Jenkins, T, Edelstein, I, South, AP, Bleck, O, Wessagowit, V, Mallipeddi, R, Orchard, GE, Wan, H, Dopping-Hepenstal, PJ, Mellerio, JE, Whittock, NV, Munro, CS, Steensel, MA, Steijlen, PM, Ni, J, Zhang, L, Hashimoto, T, Eady, RAJ, McGrath, JA (2002) Lipoid proteinosis maps to 1q21 and is caused by mutations in the extracellular matrix protein 1 gene (ECM1). Hum Mol Genet 11: pp. 833-840 CrossRef
    5. Wang, L, Yu, J, Ni, J, Xu, XM, Wang, J, Ning, H, Pei, XF, Chen, J, Yang, S, Underhill, CB, Liu, L, Liekens, J, Merregaert, J, Zhang, L (2003) Extracellular matrix protein 1 (ECM1) is over-expressed in malignant epithelial tumors. Cancer Lett 200: pp. 57-67 CrossRef
    6. Lal, G, Hashimi, S, Smith, BJ, Lynch, CF, Zhang, L, Robinson, RA, Weigel, RJ (2009) Extracellular matrix 1 (ECM1) expression is a novel prognostic marker for poor long-term survival in breast cancer: a hospital-based cohort study in Iowa. Ann Surg Oncol 16: pp. 2280-2287 434-009-0533-2" target="_blank" title="It opens in new window">CrossRef
    7. Wu, QW (2012) She HQ, Liang J, Huang YF, Yang QM, Yang QL, Zhang ZM: Expression and clinical significance of extracellular matrix protein 1 and vascular endothelial growth factor-C in lymphatic metastasis of human breast cancer. BMC Cancer 12: pp. 47 CrossRef
    8. Carter, P, Presta, L, Gorman, CM, Ridgway, JB, Henner, D, Wong, WL, Rowland, AM, Kotts, C, Carver, ME, Shepard, HM (1992) Humanization of an anti-p185HER2 antibody for human cancer therapy. Proc Natl Acad Sci U S A 89: pp. 4285-4289 CrossRef
    9. Yakes, FM, Chinratanalab, W, Ritter, CA, King, W, Seelig, S, Arteaga, CL (2002) Herceptin-induced inhibition of phosphatidylinositol-3 kinase and Akt Is required for antibody-mediated effects on p27, cyclin D1, and antitumor action. Cancer Res 62: pp. 4132-4141
    10. Goldenberg, MM (1999) Trastuzumab, a recombinant DNA-derived humanized monoclonal antibody, a novel agent for the treatment of metastatic breast cancer. Clin Therapeut 21: pp. 309-318 88288-0" target="_blank" title="It opens in new window">CrossRef
    11. Slamon, DJ, Leyland-Jones, B, Shak, S, Fuchs, H, Paton, V, Bajamonde, A, Fleming, T, Eiermann, W, Wolter, J, Pegram, M, Baselga, J, Norton, L (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344: pp. 783-792 CrossRef
    12. Ritter, CA, Perez-Torres, M, Rinehart, C, Guix, M, Dugger, T, Engelman, JA, Arteaga, CL (2007) Human breast cancer cells selected for resistance to trastuzumab in vivo overexpress epidermal growth factor receptor and ErbB ligands and remain dependent on the ErbB receptor network. Clin Cancer Res 13: pp. 4909-4919 432.CCR-07-0701" target="_blank" title="It opens in new window">CrossRef
    13. Huang, X, Gao, L, Wang, S, McManaman, JL, Thor, AD, Yang, X, Esteva, FJ, Liu, B (2010) Heterotrimerization of the growth factor receptors erbB2, erbB3, and insulin-like growth factor-I receptor in breast cancer cells resistant to herceptin. Cancer Res 70: pp. 1204-1214 CrossRef
    14. Nahta, R, Takahashi, T, Ueno, NT, Hung, MC, Esteva, FJ (2004) p27kip1 down-regulation is associated with trastuzumab resistance in breast cancer cells. Cancer Res 64: pp. 3981-3986 CrossRef
    15. Nagata, Y, Lan, KH, Zhou, X, Tan, M, Esteva, FJ, Sahin, AA, Klos, KS, Li, P, Monia, BP, Nguyen, NT, Hortobagyi, GN, Hung, MC, Yu, D (2004) PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell 6: pp. 117-127 CrossRef
    16. Berns, K, Horlings, HM, Hennessy, BT, Madiredjo, M, Hijmans, EM, Beelen, K, Linn, SC, Gonzalez-Angulo, AM, Stemke-Hale, K, Hauptmann, M, Beijersbergen, RL, Mills, GB, Vijver, MJ, Bernards, R (2007) A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell 12: pp. 395-402 CrossRef
    17. Nagy, P, Friedlander, E, Tanner, M, Kapanen, AI, Carraway, KL, Isola, J, Jovin, TM (2005) Decreased accessibility and lack of activation of ErbB2 in JIMT-1, a herceptin-resistant, MUC4-expressing breast cancer cell line. Cancer Res 65: pp. 473-482
    18. Todeschini, P, Cocco, E, Bellone, S, Varughese, J, Lin, K, Carrara, L, Guzzo, F, Buza, N, Hui, P, Silasi, DA, Ratner, E, Azodi, M, Schwartz, PE, Rutherford, TJ, Pecorelli, S, Santin, AD (2011) Her2/neu extracellular domain shedding in uterine serous carcinoma: implications for immunotherapy with trastuzumab. Br J Cancer 105: pp. 1176-1182 CrossRef
    19. Zhao, Y, Liu, H, Liu, Z, Ding, Y, Ledoux, SP, Wilson, GL, Voellmy, R, Lin, Y, Lin, W, Nahta, R, Liu, B, Fodstad, O, Chen, J, Wu, Y, Price, JE, Tan, M (2011) Overcoming trastuzumab resistance in breast cancer by targeting dysregulated glucose metabolism. Cancer Res 71: pp. 4585-4597 CrossRef
    20. Oliveras-Ferraros, C, Corominas-Faja, B, Cufi, S, Vazquez-Martin, A, Martin-Castillo, B, Iglesias, JM, L贸pez-Bonet, E, Martin, 脕G, Menendez, JA (2012) Epithelial-to-mesenchymal transition (EMT) confers primary resistance to trastuzumab (Herceptin). Cell Cycle 11: pp. 4020-4032 CrossRef
    21. Park, S, Lee, KM, Ju, JH, Kim, J, Noh, DY, Lee, T, Shin, I (2010) Protein expression profiling of primary mammary epithelial cells derived from MMTV-neu mice revealed that HER2/NEU-driven changes in protein expression are functionally clustered. IUBMB Life 62: pp. 41-50
    22. Lee, GY, Park, K, Kim, SY, Byun, Y (2007) MMPs-specific PEGylated peptide鈥揇OX conjugate micelles that can contain free doxorubicin. Eur J Pharm Biopharm 67: pp. 646-654 CrossRef
    23. Hondermarck, H, Vercoutter-Edouart, AS, Revillion, F, Lemoine, J, El-Yazidi-Belkoura, I, Nurcombe, V, Peyrat, JP (2001) Proteomics of breast cancer for marker discovery and signal pathway profiling. Proteomics 1: pp. 1216-1232 CrossRef
    24. rong class="a-plus-plus">Kaplan-Meier Plotter Breast Cancer.rong> [http://kmplot.com/breast]
    25. Mongiat, M, Fu, J, Oldershaw, R, Greenhalgh, R, Gown, AM, Iozzo, RV (2003) Perlecan protein core interacts with extracellular matrix protein 1 (ECM1), a glycoprotein involved in bone formation and angiogenesis. J Biol Chem 278: pp. 17491-17499 CrossRef
    26. Li, Z, Zhang, Y, Liu, Z, Wu, X, Zheng, Y, Tao, Z, Mao, K, Wang, J, Lin, G, Tian, L, Ji, Y, Qin, M, Sun, S, Zhu, X, Sun, B (2011) ECM1 controls TH2 cell egress from lymph nodes through re-expression of S1P1. Nat Immunol 12: pp. 178-185 CrossRef
    27. Merlin, J, Stechly, L, Beauce, S, Monte, D, Leteurtre, E, Seuningen, I, Huet, G, Pigny, P (2011) Galectin-3 regulates MUC1 and EGFR cellular distribution and EGFR downstream pathways in pancreatic cancer cells. Oncogene 30: pp. 2514-2525 CrossRef
    28. Zhao, Q, Guo, X, Nash, GB, Stone, PC, Hilkens, J, Rhodes, JM, Yu, LG (2009) Circulating galectin-3 promotes metastasis by modifying MUC1 localization on cancer cell surface. Cancer Res 69: pp. 6799-6806 CrossRef
    29. Schroeder, JA, Thompson, MC, Gardner, MM, Gendler, SJ (2001) Transgenic MUC1 interacts with epidermal growth factor receptor and correlates with mitogen-activated protein kinase activation in the mouse mammary gland. J Biol Chem 276: pp. 13057-13064 CrossRef
    30. Pochampalli, MR, Bejjani, RM, Schroeder, JA (2007) MUC1 is a novel regulator of ErbB1 receptor trafficking. Oncogene 26: pp. 1693-1701 CrossRef
    31. Ochieng, J, Fridman, R, Nangia-Makker, P, Kleiner, DE, Liotta, LA, Stetler-Stevenson, WG, Raz, A (1994) Galectin-3 is a novel substrate for human matrix metalloproteinases-2 and 鈭?. Biochemistry 33: pp. 14109-14114 CrossRef
    32. Nangia-Makker, P, Raz, T, Tait, L, Hogan, V, Fridman, R, Raz, A (2007) Galectin-3 cleavage: a novel surrogate marker for matrix metalloproteinase activity in growing breast cancers. Cancer Res 67: pp. 11760-11768 CrossRef
    33. Sato, H, Seiki, M (1993) Regulatory mechanism of 92聽kDa type IV collagenase gene expression which is associated with invasiveness of tumor cells. Oncogene 8: pp. 395-405
    34. Savor猫, C, Zhang, C, Muir, C, Liu, R, Wyrwa, J, Shu, J, Zhau, HE, Chung, LW, Carson, DD, Farach-Carson, MC (2005) Perlecan knockdown in metastatic prostate cancer cells reduces heparin-binding growth factor responses in vitro and tumor growth in vivo. Clin Exp Metastasis 22: pp. 377-390 CrossRef
    35. Radke, S, Austermann, J, Russo-Marie, F, Gerke, V, Rescher, U (2004) Specific association of annexin 1 with plasma membrane-resident and internalized EGF receptors mediated through the protein core domain. FEBS Lett 578: pp. 95-98 CrossRef
    36. Hu, Y, Gao, H, Vo, C, Ke, C, Pan, F, Yu, L, Siegel, E, Hess, KR, Linskey, ME, Zhou, YH (2014) Anti-EGFR function of EFEMP1 in glioma cells and patient prognosis. Oncoscience 1: pp. 205-215
    37. Sercu, S, Zhang, M, Oyama, N, Hansen, U, Ghalbzouri, AE, Jun, G, Geentjens, K, Zhang, L, Merregaert, JH (2008) Interaction of extracellular matrix protein 1 with extracellular matrix components: ECM1 is a basement membrane protein of the skin. J Invest Dermatol 128: pp. 1397-1408 CrossRef
    38. Garrett, JT, Olivares, MG, Rinehart, C, Granja-Ingram, ND, S谩nchez, V, Chakrabarty, A, Dave, B, Cook, RS, Pao, W, McKinely, E, Manning, HC, Chang, J, Arteaga, CL (2011) Transcriptional and posttranslational up-regulation of HER3 (ErbB3) compensates for inhibition of the HER2 tyrosine kinase. Proc Natl Acad Sci U S A 108: pp. 5021-5026 CrossRef
    39. Liu, W, Hsu, DK, Chen, HY, Yang, RY, Carraway, KL, Isseroff, RR, Liu, FT (2012) Galectin-3 regulates intracellular trafficking of EGFR through Alix and promotes keratinocyte migration. J Invest Dermatol 132: pp. 2828-2837 CrossRef
    40. Hisatsune, A, Nakayama, H, Kawasaki, M, Horie, I, Miyata, T, Isohama, Y, Kim, KC, Katsuki, H (2011) Anti-MUC1 antibody inhibits EGF receptor signaling in cancer cells. Biochem Biophys Res Commun 405: pp. 377-381 CrossRef
    41. Raina, D, Uchida, Y, Kharbanda, A, Rajabi, H, Panchamoorthy, G, Jin, C, Kharbanda, S, Scaltriti, M, Baselga, J, Kufe, D (2014) Targeting the MUC1-C oncoprotein downregulates HER2 activation and abrogates trastuzumab resistance in breast cancer cells. Oncogene 33: pp. 3422-3431 CrossRef
    42. Iurisci, I, Tinari, N, Natoli, C, Angelucci, D, Cianchetti, E, Iacobelli, S (2000) Concentrations of galectin-3 in the sera of normal controls and cancer patients. Clin Cancer Res 6: pp. 1389-1393
    43. Iorio, MV, Casalini, P, Piovan, C, Leva, G, Merlo, A, Triulzi, T, M茅nard, S, Croce, CM (2009) Tagliabue E: microRNA-205 regulates HER3 in human breast cancer. Cancer Res 69: pp. 2195-2200 CrossRef
    44. Nangia-Makker, P, Wang, Y, Raz, T, Tait, L, Balan, V, Hogan, V, Raz, A (2010) Cleavage of galectin-3 by matrix metalloproteases induces angiogenesis in breast cancer. Int J Cancer 127: pp. 2530-2541 CrossRef
    45. Fujimoto, N, Terlizzi, J, Aho, S, Brittingham, R, Fertala, A, Oyama, N, McGrath, JA, Uitto, J (2006) Extracellular matrix protein 1 inhibits the activity of matrix metalloproteinase 9 through high-affinity protein/protein interactions. Exp Dermatol 15: pp. 300-307 CrossRef
    46. Xiong, GP, Zhang, JX, Gu, SP, Wu, YB, Liu, JF (2012) Overexpression of ECM1 contributes to migration and invasion in cholangiocarcinoma cell. Neoplasma 59: pp. 409-415 CrossRef
    47. Chattopadhyay, S, Shubayev, VI (2009) MMP-9 controls Schwann cell proliferation and phenotypic remodeling via IGF-1 and ErbB receptor-mediated activation of MEK/ERK pathway. Glia 57: pp. 1316-1325 CrossRef
    48. Burns, DM, He, C, Li, Y, Scherle, P, Liu, X, Marando, CA, Covington, MB, Yang, G, Pan, M, Turner, S, Fridman, JS, Hollis, G, Vaddi, K, Yeleswaram, S, Newton, R, Friedman, S, Metcalf, B, Yao, W (2008) Conversion of an MMP-potent scaffold to an MMP-selective HER-2 sheddase inhibitor via scaffold hybridization and subtle P鈥1 permutations. Bioorg Med Chem Lett 18: pp. 560-564 CrossRef
    49. Colomer, R, Montero, S, Lluch, A, Ojeda, B, Barnadas, A, Casado, A, Massuti, B, Cort茅s-Funes, H, Lloveras, B (2000) Circulating HER2 extracellular domain and resistance to chemotherapy in advanced breast cancer. Clin Cancer Res 6: pp. 2356-2362
    50. Huang, L, Chen, D, Liu, D, Yin, L, Kharbanda, S, Kufe, D (2005) MUC1 oncoprotein blocks glycogen synthase kinase 3尾-mediated phosphorylation and degradation of 尾-catenin. Cancer Res 65: pp. 10413-10422 CrossRef
    51. Cascio, S, Zhang, L, Finn, OJ (2011) MUC1 protein expression in tumor cells regulates transcription of proinflammatory cytokines by forming a complex with nuclear factor-魏B p65 and binding to cytokine promoters: importance of extracellular domain. J Biol Chem 286: pp. 42248-42256 CrossRef
    52. Rajabi, H, Alam, M, Takahashi, H, Kharbanda, A, Guha, M, Ahmad, R, Kufe, D (2014) MUC1-C oncoprotein activates the ZEB1/miR-200c regulatory loop and epithelial鈥搈esenchymal transition. Oncogene 33: pp. 1680-1689 CrossRef
    53. Gu, M, Guan, J, Zhao, L, Ni, K, Li, X, Han, Z (2013) Correlation of ECM1 expression level with the pathogenesis and metastasis of laryngeal carcinoma. Int J Exp Pathol 6: pp. 1132-1137
  • 刊物主题:Cancer Research; Oncology;
  • 出版者:BioMed Central
  • ISSN:1465-5411
文摘
Introduction Extracellular matrix protein 1 (ECM1) is a secreted glycoprotein with putative functions in cell proliferation, angiogenesis and differentiation. Expression of ECM1 in several types of carcinoma suggests that it may promote tumor development. In this study, we investigated the role of ECM1 in oncogenic cell signaling in breast cancer, and potential mechanisms for its effects. Methods In order to find out the functional role of ECM1, we used the recombinant human ECM1 and viral transduction systems which stably regulated the expression level of ECM1. We examined the effect of ECM1 on cell proliferation and cell signaling in vitro and in vivo. Moreover, tissues and sera of patients with breast cancer were used to confirm the effect of ECM1. Results ECM1 protein was increased in trastuzumab-resistant (TR) cells, in association with trastuzumab resistance and cell proliferation. Through physical interaction with epidermal growth factor receptor (EGFR), ECM1 potentiated the phosphorylation of EGFR and extracellular signal-regulated kinase upon EGF treatment. Moreover, ECM1-induced galectin-3 cleavage through upregulation of matrix metalloproteinase 9 not only improved mucin 1 expression, but also increased EGFR and human epidermal growth factor receptor 3 protein stability as a secondary signaling. Conclusions ECM1 has important roles in both cancer development and trastuzumab resistance in breast cancer through activation of EGFR signaling.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700