Chemical Effects of Air Plasma Species on Aqueous Solutes in Direct and Delayed Exposure Modes: Discharge, Post-discharge and Plasma Activated Water
详细信息    查看全文
  • 作者:Jean-Louis Brisset ; Joanna Pawlat
  • 关键词:Plasma activated water (PAW) ; Post ; discharge ; Peroxynitrite ; Oxidizing degradation ; Bacterial inactivation ; Non ; thermal air plasmas
  • 刊名:Plasma Chemistry and Plasma Processing
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:36
  • 期:2
  • 页码:355-381
  • 全文大小:944 KB
  • 参考文献:1.Locke B, Sato M, Sunka P, Koffmann M, Chang JS (2006) Electrohydraulic discharges and non-thermal plasma for water treatment. Ind Eng Chem Res 45:882–905CrossRef
    2.Brisset JL, Moussa D, Doubla A, Hnatiuc E, Hnatiuc B, Kamgang Youbi G, Herry JM, Naitali M, Bellon-Fontaine MN (2008) Chemical reactivity of discharges and temporal post discharges in plasma treatment of aqueous media. Example of gliding arc discharge treated solutions. A review. Ind Eng Chem Res 47:5761–5781CrossRef
    3.Bruggeman P, Leys C (2009) Non-thermal plasmas in and in contact with liquids. J Phys D Appl Phys 42:1–28. doi:10.​1088/​0022-3727/​/​42/​5/​053001 CrossRef
    4.Joshi R, Mededovic-Thagard S (2012) Streamer-like electrical discharges in water. Part I fundamental mechanisms. Plasma Chem Plasma Process 33:1–15CrossRef
    5.Joshi R, Mededovic-Thagard S (2012) Streamer-like electrical discharges in water. Part II environmental applications. Plasma Chem Plasma Process 33:17–49CrossRef
    6.Graves D (2012) The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. J Phys D Appl Phys 45:263001–263043CrossRef
    7.Lukes P, Dolezalova E, Sisrova I, Clupek M (2014) Aqueous chemistry and bacterial effects from air discharge plasma in contact with water: evidence of a pseudo second-order post-discharge reaction of H2O2 and HNO2. Plasma Sources Sci Technol 23:015019. doi:10.​1088/​0963-0252/​23/​1/​015019 CrossRef
    8.Kamgang Youbi G, Herry JM, Brisset JL, Bellon-Fontaine MN, Doubla A, Naitali M (2008) Impact on disinfection efficiency of cell load and of planktonic/adherent/detached state: case of Hafnia Alvei inactivation by Plasma Activated Water. Appl Microbiol Biotechnol 81:449–457CrossRef
    9.Naitali M, Kamgang Youbi G, Herry JM, Bellon-Fontaine MN, Brisset JL (2010) Combined effects of long time chemical species during microbial inactivation by atmospheric plasma treated water. Appl Environ Microbiol 76:7662–7664CrossRef
    10.Kamgang Youbi G, Herry JM, Meyheuc T, Brisset JL, Bellon-Fontaine MN, Doubla A, Naitali M (2009) Microbial inactivation using plasma activated water obtained by gliding electric discharges. Lett Appl Microbiol 48:13–18CrossRef
    11.Naitali M, Hnatiuc B, Herry JM, Hnatiuc E, Bellon-Fontaine MN, Brisset JL (2009) Decontamination of chemical and microbial targets using Gliding electrical discharges. In: Brelles-Marino G (ed) Biological and environmental applications of gas discharge plasmas. Nova Science Publishers, New York
    12.Obradovic B, Kozakova Z, Vyhnankova E, Dojcinovic B, Krcma F, Kuraica M (2015) Comparison of liquid and gas phase plasma reactors for decoloration of azo dyes. In: Canal C, Aparicio N, Labay C, Buxadera J, Ginebra MP (eds) Proceedings of the 2nd annual meeting “Electrical Discharges with Liquids for Future Applications” COST action TD 1028, Barcelona 23–26 Feb. 2015, pp 72–72. ISBN 978-84-606-5797-3
    13.Verreycken T, Schram D, Leys C, Bruggeman P (2010) Spectroscopic study of an atmospheric pressure dc glow discharge with a water electrode in atomic and molecular gases. Plasma Sources Sci Technol 19:045004. doi:10.​1088/​0963-0252/​19/​045004 CrossRef
    14.Tresp H, Hammer M, Weltman KD, Reuter S (2013) Reactive species treatment by atmospheric pressure plasma jet of liquids. In: Krcma F (ed) Proceedings of the COST action TD 1028, WG4 workshop, Bratislava 29/30.10.2013, Kick-off meeting, Bratislava, pp 45–45
    15.Traylor M, Pavlovich M, Karim S, Hait P, Sakayama Y, Clark D, Graves D (2011) Long term antibacterial efficacy of air plasma activated water. J Phys D Appl Phys 44:472001. doi:10.​1088/​0022-3727/​44/​47/​472001 CrossRef
    16.Miyahara T, Ochai S, Sato T (2009) Interaction mechanism between a post-discharge flow and water surface. EPL 86:45001. doi:10.​1209/​0295-5075/​86/​45001 CrossRef
    17.Ursache M, Stroici C, Burlica R, Hnatiuc E (2012) The evolution of aqueous solutions properties exposed to a glidarc discharge. In: IEEE conference SS04 pl.04. RD-006475. Proceedings of OPTIM 2012: 13th international conference on electrical electronic equipment, Braşov, Romania, pp 15–15
    18.Brisset JL, Hnatiuc E (2012) Peroxynitrite: a re-examination of the chemical properties of non-thermal discharges burning in air over aqueous solutions. Plasma Chem Plasma Process 32:655–674CrossRef
    19.Naitali M, Herry JM, Hnatiuc E, Kamgang Youbi G, Brisset JL (2012) Kinetics and bacterial inactivation induced by peroxynitrite by electric discharges in air. Plasma Chem Plasma Process 32:675–692CrossRef
    20.Zeldovich YB, Sadovnikov PH, Frank-Kamenetskii DA (1947) The oxidation of nitrogen by combustion. Shelef M (Trans). Academy of Sciences of USSR, Institute of Chemical Physics, Moscow, Leningrad
    21.Aithal S (2012) A comparative study of NOx computation methods coupled to quasi-dimensional models in SI engines. In: Proceedings of the ASME 2012 internal combustion engine division fall technical conference ICEF 2012, Sept 23–26, Vancouver, BC, Canada, 92012 pp
    22.Halliwell B, Evans P, Whiteman M (1999) Assessment of peroxynitrite scavengers in vitro. In Parker L (ed) Methods in enzymology, vol 301. Nitric oxide, Part C, chap. 35. Academic Press, London
    23.Koppenol W (1998) The basic chemistry of nitrogen monoxide and peroxonitrite. Free Radic Biol Med 25:385–391CrossRef
    24.Wise D, Houghton G (1968) Diffusion coefficients of neon, krypton, xenon, carbon monoxide and nitric oxide in water at 10–60 °C. Chem Eng Sci 23:1211–1216CrossRef
    25.Ringbom A (1963) Complexation in analytical chemistry. Wiley, New York
    26.Buehler R, Staehelin J, Hoigné J (1984) Ozone decomposition in water studied by pulse radiolysis. 1-HO2/O2 and HO3/O3 as intermediates. J Phys Chem 88:2560–2564CrossRef
    27.Velikonja J, Bergougnou M, Castle G, Cairns W, Insulet I (2001) Co-generation of ozone and hydrogen peroxide by dielectric barrier AC discharge in humid oxygen. Ozone Sci Eng 23:467–478CrossRef
    28.Malquist PA, Agren H, Roos B (1983) The lowest states of the O 3 + ion. Chem Phys Lett 98:444–449CrossRef
    29.von Sonntag C, Schuchmann HP (1991) The elucidation of peroxyl radical reactions in aqueous solution with the help of radiation-chemical methods. Angew Chem Int Ed Engl 30:1229–1253CrossRef
    30.Praneeth V, Neese F, Lehnert N (2005) Spin density distribution in five- and six-coordinate FeII-porphyrin NO complexes evidenced by magnetic circular dichroism spectroscopy. Inorg Chem 44:2570–2572CrossRef
    31.Romero N, Radi R, Linares E, Augusto O, Detweiler C, Mason R, Denicola A (2003) Isomerization of human hemoglobin with peroxynitrite. Isomerization to nitrate and secondary formation of protein radicals. J Biol Chem 278:44049–44057CrossRef
    32.Pietraforte D, Salzano A, Scorza G, Marino G, Minetti M (2001) Mechanism of peroxynitrite interaction with ferric hemoglobin and identification of nitrated tyrosine residue. CO2 inhibits Heme-catalyzed scavenging and isomerization. Biochemistry 40:15300–15309CrossRef
    33.Kalinga S (2006) Interaction of peroxynitrite with myoglobin and hemoglobin. Can J Chem 84:788–793CrossRef
    34.Bard AJ, Parsons R, Jordan J (1985) Standard potentials in aqueous solution. IUPAC Publication, Marcel Dekker, New York
    35.Anthelman M, Harris F (1982) The encyclopedia of chemical electrode potentials. Plenum Press, New-YorkCrossRef
    36.Armstrong D (1998) Thermochemistry of N-centered radicals. In: Alfassi Z (ed) N-centered radicals. Wiley, Chichester
    37.Stanbury D (1989) Adv Inorg Chem 33:69–138CrossRef
    38.Wardman P (1989) J Phys Chem Ref Data 18:1637. doi:10.​1063/​1.​555843 CrossRef
    39.Augusto O, Miyamoto S (2011) Oxygen radicals and related species. In: Pantopoulos K, Schipper H (eds) Principles of free radical biomedicine, vol 1, chap 2. Nova Science Publishers, New York
    40.Bohle D, Glassbrenner P, Hansert B (1996) Methods Enzymol 269:302–311CrossRef
    41.Jones CW (1999) Applications of hydrogen peroxide and derivatives. RCS Clean Technology Monographs, Cambridge
    42.Balley C, Gordon R (1938) Trans Faraday Soc J 34:1133–1138, cited in: Schumb W, Satterfield C, Wentworth R (1986) Hydrogen peroxide. University Microfilms International, Ann Arbor, Mich
    43.Eisenberg G (1943) Colorimetric determination of hydrogen peroxide. Ind Eng Chem Anal Ed 15:327–328CrossRef
    44.Kleiner KE (1953) Zhur. Obshchei Khim 22:17–23
    45.Cabelli D (1997) The reactions of HO2/O 2 − radicals in aqueous solution. In: Alfassi Z (ed) Peroxyl radicals. Wiley, Chichester
    46.Beckman JS, Chen J, Ischiropoulos H, Crow JP (1994) Oxidative chemistry of peroxynitrite. Methods Enzymol 233:229–240CrossRef
    47.White CR, Patel RP, Darley-Usmar V (1999) NO oxide donor generation from reactions of peroxynitrite. In: Packer L (ed) Methods in enzymology, vol 301. Nitric oxide, Part C, chap 31. Academic Press, London
    48.Elliott KAC (1932) Oxidation catalysed by horseradish- and milk-peroxidases. Biochem J 26:1281–1290CrossRef
    49.Halfpenny E, Robinson PL (1952) Peroxynitrous acid. The reaction between hydrogen peroxide and nitrous acid, and the properties of an intermediate product. J Chem Soc. doi:10.​1039/​JR9520000928
    50.Anbar M, Taube H (1954) Interaction of nitrous acid and hydrogen peroxide with water. J Am Chem Soc 76:6243–6247CrossRef
    51.Pannala AS, Singh S, Rice-Evans C (1999) Interaction of carotenoids and tocopherols with peroxynitrite. In: Packer L (ed) Methods in enzymology, vol 301. Nitric oxide, Part C, chap 34. Academic Press, London
    52.Smulik R, Debski D, Zielonka J, Michalowski B, Adamus J, Marcinek A, Kalyanaraman B, Sikora A (2014) Nitroxyl (HNO) reacts with molecular oxygen and forms peroxynitrite at physiological pH: biological applications. J Biol Chem 289:35570–35580. doi:10.​1074/​jbc.​M114.​597740 CrossRef
    53.Kissner R, Koppenol W (2002) Product distribution of peroxynitrite decay as a function of pH, temperature and concentration. J Am Chem Soc 124:234–239CrossRef
    54.Khan A, Kovacik D, Kolbanovskiy A, Desai M, Frenkel K, Geacintov N (2000) The decomposition of peroxynitrite to nitroxyl anion (NO−) and singlet oxygen in aqueous solutions. Proc Natl Acad Sci USA. doi:10.​1073/​pnas.​050587297
    55.Martinez G, Di Mascio P, Bonini M, Augusto O, Briviba K, Sies H, Maurer P, Röthlisberger U, Herold S, Koppenol W (2000) Peroxynitrite does not decompose to singlet oxygen (1ΔgO2) and nitroxyl (NO−). Proc Natl Acad Sci USA 97(19):10307–10312. doi:10.​1073/​pnas.​190256897 CrossRef
    56.Hughes M (1999) Relationship between nitric oxide, nitroxyl ion, nitrosonium cation and peroxynitrite. Biochem Biophys Acta 1411:263–272
    57.Radi R (2009) Nitric oxide, oxidants and protein tyrosine nitration. Proc Natl Acad Sci USA 106:1–12. doi:10.​1073/​pnas.​0307446101 CrossRef
    58.Van der Vliet A, O’Neil C, Halliwell B, Cross C, Kaur H (1994) Aromatic hydroxylation and nitration of phenylalanine and tyrosine by peroxynitrite. FEBS Lett 339:89–92CrossRef
    59.Butler A, Rutherford T, Short D, Ridd J (1997) Tyrosine nitration and peroxonitrite (peroxynitrite isomerisation: 15N CIDNP NMR study. Chem Commun 7:669–670CrossRef
    60.Squadrito G, Pryor W (1998) Oxidative chemistry of nitric oxide: the roles of superoxide, peroxynitrite and carbon dioxide. Radic Biol Med 25:392–403CrossRef
    61.McConnell P, Reasor M, Van Dyke K (2003) Three model systems measure oxidation/nitration damage caused by peroxynitrite. J Biosci 28:71–76CrossRef
    62.Bobkova E, Krasnov D, Sungurova A, Rybkin V, Choi H (2014) Personal communication
    63.Carey F, Giuliana B (2011) Organic chemistry. McGraw Hill, New York City
    64.Soloman T, Fryhle C (2011) Organic chemistry. Wiley, New York
    65.Beyer H, Walter W (1997) Organic chemistry. Albion Chemical Sciences Series
    66.Allinger N, Cava M, Jonsh D, Johnson C, Lebel N, Stevens C (1971) Organic chemistry. Worth Publishers, London
    67.March J (1992) Advances in organic chemistry. Wiley, New York
    68.Vogel P (1997) Chimie organique (in French). De Boek, Bruxelles
    69.Moussa D, Brisset JL (2003) Disposal of spent tributylphosphate by gliding arc plasma. J Hazard Mater 102:189–200CrossRef
    70.Pascal S, Moussa D, Hnatiuc E, Brisset JL (2010) Plasma-chemical degradation of Phosphorous containing warfare agents. J Hazard Mater 175:1037–1041CrossRef
    71.Augusto O, Bonini M, Amanso A, Linares E, Santos C, De Menezes S (2002) Nitrogen dioxide and carbonate radical anion: two emerging radicals in biology (review). Free Radic Biol Med 32:841–859CrossRef
    72.Lymar SV, Hurst JK (1995) Rapid reaction between peroxonitrite ion and carbon dioxide: im for biological activity. J Am Chem Soc 117:8867–8868CrossRef
    73.Padmaja S, Squadritto G, Lemercier JN, Cueto R, Pryor W (1997) Peroxynitrite mediated oxidation of D.L-Selenothionine: kinetics, mechanism and the role of carbon dioxide. Free Radic Biol Med 23:917–926CrossRef
    74.Ehlbeck J, Schnabel U, Polak M, Winter J, Von Woedtke T, Brandenburg R, Von den Hagen T, Weltmann KD (2011) Low temperature atmospheric pressure plasma sources for microbial decontamination. J Phys D Appl Phys 44:013002. doi:10.​1088/​0022-3727/​44/​1/​013002 CrossRef
    75.Cantrell C (1998) NOx in the atmosphere. In: Alfassi Z (ed) N-centered radicals. Wiley, New York
    76.Wardman P (1998) Nitrogen dioxide in biology: correlating chemical kinetics with biological effects. In: Alfassi Z (ed) N-centered radicals. Wiley, New York
    77.Goldstein S, Squadrito G, Pryor W, Czapski G (1996) Direct and indirect oxidations by peroxynitrite, neither involving the hydroxyl radical. Free Radic Biol Med 21:965–974CrossRef
    78.Denicola A, Souza J, Radi R (1998) Diffusion of peroxynitrite across erythrocyte membrane. Proc Natl Acad Sci USA 95:3566–3571CrossRef
    79.Pacher P, Beckman J, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87:315–424CrossRef
    80.Abdelmalek F (2003) Plasmachimie des solutions aqueuses. Application à la dégradation de composés toxiques. Ph.D Thesis, in French, University of Mostaganem, Mostaganem, Algeria
    81.Katsumura Y (1998) NO2 and NO3 radicals in radiolysis of nitric acid solutions. In: Alfassi Z (ed) N-centered radicals. Wiley, New York
    82.Zielonka J, Sikora A, Joseph J, Kalyanaraman B (2010) Peroxynitrite is the major species formed from different flux ratios of co-generated nitric oxide and superoxide: direct reaction with boronate bases fluorescent probes. J Am Soc Biochem Mol Biol. doi:10.​1074/​jbc.​M110.​110080
    83.Machala Z, Tarabova B, Hensel K, Spetlikova E, Sikurova L, Lukes P (2013) Formation of ROS and RNS in water electro-sprayed through tansient spark discharge in air and their bactericidal effects. Plasma Proc Polym 10:649–659CrossRef
    84.Alvarez S, Zaobornyi T, Valdez V (2000) Peroxynitrite dependent chemiluminescence. Free Radic Biol Med 29(10, Suppl. 1):S65
    85.Lu C, Lin J, Huie C, Yamada Y (2004) Chemiluminescence study of carbonate and peroxynitrous acid and its application to the direct determination of nitrite based on solid surface enhancement. Anal Chim Acta 510:29–34CrossRef
    86.Lukes P, Clupek M, Babicky V, Sunka P (2008) UV radiation from the pulsed corona discharge in water. Plasma Source Sci Technol 17:024012. doi:10.​1088/​0963-0252/​17/​2/​024012 CrossRef
    87.Liang B, Andrews L (2001) IR spectra of cis and trans peroxynitrite in solid argon. J Am Chem Soc 123:9848–9854CrossRef
    88.Lo WJ, Lee YP, Tsai JH, Tsai HH, Hamilton TP, Harrisson JG, Beckmann J (1995) IR absorption of cis/trans alkali metal peroxynitrites (Li, Na, K) in solid argon. J Chem Phys 103:4026–4034. doi:10.​1063/​1.​469588 CrossRef
    89.Peteu S, Bose T, Bayachou M (2013) Polymerized hemin as an electrocatalytic platform for peroxynitrite’s oxidation and detection. Anal Chim Acta 780:81–88CrossRef
    90.Akolkar R, Sankaran R (2013) Charge transfer processes at the interface between plasmas and liquids. J Vac Sci Technol, A 31:050811. doi:10.​116/​1.​4810786 CrossRef
    91.Wu S, Wang L, Jasinski K, Kubant R, Malinski T (2010) Ultraviolet B light induced-nitric oxide/peroxynitrite imbalance in keratinocytes implications for apoptosis and necrosis. Photochem Photobiol 86:389–396CrossRef
    92.Pavlovich M, Chen Z, Sakiyama Y, Clak D, Graves D (2013) Antimicrobial synergy between ambient gas plasma and UVA treatment of aqueous solutions. Plasma Proc Polym 10:69–76. doi:10.​1002/​ppap.​201200073 CrossRef
    93.Merouani DR, Abdelmalek F, Guezzar MR, Semmoud A, Addou A, Brisset JL (2013) Influence of peroxynitrite in gliding arc discharges treatment of Alizarine Red S and post discharge effects. Ind Eng Chem Res 52:1471–1480CrossRef
    94.Kamgang Youbi G, Herry JM, Bellon-Fontaine MN, Brisset JL, Doubla A, Naitali M (2007) Evidence of temporal post-discharge decontamination of bacteria by gliding electric discharges: application to Hafnia alvei. Lett Appl Environ Microbiol 73:4791–4796CrossRef
    95.Kamgang Youbi G (2008) Propriétés réactives en post-décharge temporelle des décharges électriques glissantes dans l’air humide: Application à la dégradation de colorant azoïque et a la décontamination microbienne. Ph D Thesis, in French, Universities of Rouen (France) and Yaounde-I (Cameroon)
    96.Gnokam Zumgang F, Doubla A, Brisset JL (2010) Temporal post-discharge reactions in plasma-chemical degradation of slaughterhouse effluents. Chem Eng Commun 198:483–493. doi:10.​1080/​009864445.​49846 CrossRef
    97.Herold S, Fago A (2005) Reaction of peroxynitrite with globin proteins and their possible physiological role. Comp Biochem Physiol A 142:124–129CrossRef
    98.Deem S, Gladwin M, Berg J, Kerr M, Swenson E (2001) S-nitrosation of Hb on HPV (hypotoxic pulmonar vasoconstrictor) and expired NO. Am J Respir Crit Care Med 163:1164–1170CrossRef
    99.Park G, Park S, Choi M, Koo I, Byun J, Hong J, Sim J, Collins G, Lee J (2012) Atmospheric-pressure plasma sources for biomedical applications. Plasma Sources Sci Technol 21:043001. doi:10.​1088/​0963-0252/​21/​4/​043001 CrossRef
    100.Trujillo M, Radi R (2002) Peroxynitrite reaction with the reduced and the oxidize forms of lipoic acid: new insights into the reaction of peroxynitrite with thiols. Arch Biochem Biophys 397:91–98CrossRef
    101.Moreau M, Moussa D, Brisset JL, Orange N (2007) Antibacterial effects of the non thermal plasma treatment. In Roman C (ed) Proceedings of the European research in cold plasma applications, Iasi, Romania, pp 177–194. ISBN 978-973-0-04933-6
    102.Pourbaix M (1973) Lectures on electrochemical corrosion. Plenum Press, New YorkCrossRef
    103.Sucha L, Kotrly S (1972) Solution equilibria in analytical chemistry. Van Nostrand Reinhold Co, London
    104.Armstrong D (1998) Thermochemistry of N-centered radicals. In: Alfassi Z (ed) N-centered radicals. Wiley, New York
  • 作者单位:Jean-Louis Brisset (1)
    Joanna Pawlat (2)

    1. UFR Sciences, University of Rouen, Rouen, France
    2. Faculty of Electrical Engineering, University of Lublin, Lublin, Poland
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Mechanics
    Characterization and Evaluation Materials
    Mechanical Engineering
    Inorganic Chemistry
    Nuclear Physics, Heavy Ions and Hadrons
  • 出版者:Springer Netherlands
  • ISSN:1572-8986
文摘
The chemical interaction between non-thermal plasma species and aqueous solutions is considered in the case of discharges in humid air burning over aqueous solutions with emphasis on the oxidizing and acidic effects resulting from formed peroxynitrite ONOO− and derived species, such as transient nitrite and stable HNO3. The oxidizing properties are mainly attributed to the systems ONOO−/ONOOH [E°(ONOOH/NO2) = 2.05 V/SHE], ·OH/H2O [E°(·OH/H2O) = 2.38 V/SHE] and to the matching dimer system H2O2/H2O [E°(H2O2/H2O) = 1.68 V/SHE]. ONOOH tentatively splits into reactive species, e.g., nitronium NO+ and nitrosonium NO 2 + cations. NO+ which also results from both ionization of ·NO and the presence of HNO2 in acidic medium, is involved in the amine diazotation/nitrosation degradation processes. NO 2 + requires a sensibly higher energy than NO+ to form and is considered with the nitration and the degradation of aromatic molecules. Such chemical properties are especially important for organic waste degradation and bacterial inactivation. The kinetic aspect is also considered as an immediate consequence of exposing an aqueous container to the discharge. The relevant chemical effects in the liquid result from direct and delayed exposure conditions. The so called delayed conditions involve both post-discharge (after switching off the discharge) and plasma activated water. An electrochemical model is proposed with special interest devoted to the chemical mechanism of bacterial inactivation under direct or delayed plasma conditions. Keywords Plasma activated water (PAW) Post-discharge Peroxynitrite Oxidizing degradation Bacterial inactivation Non-thermal air plasmas

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700