Measuring equipment and test bench to control evolution of acoustic-deformation and heat fields induced in solids under failure by fluids
详细信息    查看全文
  • 作者:V. N. Oparin ; V. I. Vostrikov ; O. M. Usol’tseva ; P. A. Tsoi…
  • 关键词:Physical model ; laboratory experiment ; deformation ; fluid ; induced fracture ; acoustic emission ; speckle ; method ; test bench ; stress–strain state evolution ; physical fields ; interrelationship
  • 刊名:Journal of Mining Science
  • 出版年:2015
  • 出版时间:May 2015
  • 年:2015
  • 卷:51
  • 期:3
  • 页码:624-633
  • 全文大小:1,038 KB
  • 参考文献:1.Damaskinskaya, E.E. and Kadomtsev, A.G., Departure from Gutenberg–Richter Law, Pis’ma Zh. Tekh. Fiz., 2013, vol. 39, issue 2.
    2.Sobolev, G.A., Lementueva, R.A., and Los’, V.F., Investigation into Acoustic Signal Spectra, Proc. 9th Int. School-Seminar Physical Fundamentals of Rock Failure Forecasting, Irkutsk: 2013.
    3.Panteleev, I.A., Plekhov, O.A., and Naimark, O.B., Specific Features of Strain Localization under Uniaxial Loading of Rocks, Proc. 9th Int. School-Seminar Physical Fundamentals of Rock Failure Forecasting, Irkutsk: 2013.
    4.Shkuratnik, V.L., Filimonov, Yu.L., and Kuchurin, S.V., Features of the Kaiser Effect in Coal Specimens at Different Stages of the Triaxial Axisymmetric Deformation, J. Min. Sci., 2007, vol. 43, no. 1, pp. 1–7.CrossRef
    5.Voznesensky, A.S., Ustinov, K.B., and Shkuratnik, V.L., Theoretical Acoustic Emission Model under Mechanical Loading of Rocks in the Maximum Compression Area, Prikl. Mekh. Tekh. Fiz., 2006, vol. 47, no. 4.
    6.Vinnikov, V.A. and Shkuratnik, V.L., Theoretical Model of Thermoemission Effect of Memory in Rocks, Prikl. Mekh. Tekh. Fiz., 2008, vol. 49, no. 2.
    7.Vinnikov, V.A., Voznesensky, A.S., Ustinov, K.B., and Shkuratnik, V.L., Theoretical Models of Acoustic Emission in Rocks at Different Heating Modes, Prikl. Mekh. Tekh. Fiz., 2010, vol. 51, no. 1.
    8.Shkuratnik, V.L., Novikov, E.A., and Oshkin, R.O., Experimental Analysis of Thermally Simulated Acoustic Emission in Various-Genotype Rock Specimens under Uniaxial Compression, J. Min. Sci., 2014, vol. 50, no. 2, pp. 249–255.CrossRef
    9.Shkuratnik, V.L. and Cherepetskaya, E.B., Laser Ultrasonic Spectroscopy as a New Promising Geocontrol Method, Izv. vuzov, Gorny Zh., 2009, no. 1.
    10.Shcherbakov, I.P. and Kuksenko, V.S., Acoustic Emission Accumulation Stage in Compression and Impact Rupture of Granite, J. Min. Sci., 2012, vol. 48, no. 4, pp. 656–659.CrossRef
    11.Shcherbakov, I.P., Kuksenko, V.S., and Chmel’, A.E., Non-Extensive Statistical Analysis of Data on High-Speed Recording of Impact Solid Body Failure, Pis’ma Zh. Teor. Fiz., 2011, vol. 94, issue 5.
    12.Kuksenko, V.S., Guzev, M.A., Makarov, V.V., Rasskazov, I.Yu., Conception of Heavy Compression of Rocks and Rock Masses, Vest. DGTU, e-publication., 2011, no. 3/4 (8/9).
    13.Kuksenko, V.S., Makhmudov, H.F., and Manzhikov, B.Ts., Damage Accumulation Model for Solids and Catastrophe Prediction for Large-Scale Objects, J. Min. Sci., 2010, vol. 46, no. 4, pp. 384–393.CrossRef
    14.Zhaoa, X.G., Caib, M., Wanga, J., Maa, L.K., Damage Stress and Acoustic Emission Characteristics of the Beishan Granite, Int. J. Rock Mech. Min. Sci., 2013, vol. 64.
    15.Chmel’, A. and Shcherbakov, I.A, Comparative Acoustic Emission Study of Compression and Impact Fracture in Granite, Int. J. Rock Mech. Min. Sci., 2013, vol. 64.
    16.Oparin, V.N., Yakovitskaya, G.E., Vostretsov, A.G., Seryakov, V.M., Krivetsky, A.V., Mechanical-Electromagnetic Transformations in Rocks on Failure, J. Min. Sci., 2013, vol. 49, no. 3, pp. 343–356.CrossRef
    17.Oparin, V.N., Vostretsov, A.G., Krivetsky, A.V., Bizyaev, A.A., and Yakovitskaya, G.E., Integrated Measurement and Recording of Loads, Displacements and Electromagnetic Emission in Rocks under Uniaxial Compression, J. Min. Sci., 2011, vol. 47, no. 5, pp. 547–556.CrossRef
    18.Bespal’ko, A.A., Yavorovich, L.V., Kolesnikova, S.I., et al., Investigation into Variations in Electromagnetic Signal Characteristics under Uniaxial Compression of Rock Specimens, Izv. vuzov, Fizika., 2011, nos. 1/2.
    19.Zuev, L.B., Barannikova, S.A., Nadezhkin, M.V., and Gorbatenko, V.V., Localization of Deformation and Prognostibility of Rock Failure, J. Min. Sci., 2014, vol. 50, no. 1, pp. 43–49.CrossRef
    20.Shao-Peng Ma, Xiang-Hong, Xu, Yong-Hong Zhao, The Geo–DSCM system and its Application to the Deformation Measurement of Rock Materials, Int. J. Rock Mech. Min. Sci., 2004, vol. 41.
    21.Yunliang Tan, Yanchun Yin, and Tongbin Zhao, Investigation of Rock Failure Pattern in Creep by Digital Speckle Correlation Method, Adv. Mat. Sci. Eng., 2013, vol. 2013, Article ID916069. http://​dxdoiorg/​10.​1155/​2013/​916069.​v>
    22.Shao-Peng M., Shan–Jun L., and Guan-Chang J. An Experimental Study of the Failure Process of En-Echelon Fault Structure Using Digital Speckle Correlation Method, Chin. J. Geophys., 2005, vol. 48, no. 6.
    23.Usol’tseva, O.M., Nazarova, L.A., Tsoi, P.A., Nazarov, L.A., and Semenov, V.N., Genesis and Evolution of Discontinuities in Geomaterials: Theory and Laboratory Experiment, J. Min. Sci., 2013, vol. 49, no. 1, pp. 1–7.CrossRef
    24.Oparin, V.N., Usol’tseva, O.M., Semenov, V.N., and Tsoi, P.A., Evolution of Stress-Strain State in Structure Rock Specimens under Uniaxial Loading, J. Min. Sci., 2013, vol. 49, no. 5, pp. 677–690.CrossRef
    25.Oparin, V.N., Kiryaeva, T.A., Gavrilov, V.Yu., Shutilov, P.A., Kovchavtsev, A.P., Tanaino, A.S., Efimov, V.P., Astrakhantsev, I.E., and Grenev, N.V., Interaction of Geomechanical and Physicochemical Processes in Kuzbass Coal, J. Min. Sci., 2014, vol. 50, no. 3, pp. 191–214.CrossRef
    26.Kurlenya, M.V., Oparin, V.N., and Vostrikov, V.I., On Formation of Elastic Wave Packages in Pulse Excitement of Block Mediums. Pendulum-Type Waves Vµ, Dokl. Akad. Nauk., 1993, vol. 333, no. 4.
    27.Oparin, V.N., Simonov, B.F., Vostrikov, V.I., Pogarsky, Yu.V., and Nazarov, L.A., Geomekhanicheskie i tekhnicheskie osnovy uvelicheniya nefteotdachi plastov v vibrovolnovykh tekhnologiyakh (Geomechanical and Technical Fundamentals to Increase Oil Recovery from Petroleum Reservoir in Vibro-Wave Processes) Novosibirsk: Nauka, 2010.
    28.Adushkin, V.V. and Oparin, V.N., From the Alternating-Sign Explosion Response of Rocks to the Pendulum Waves in Stressed Geomedia, Part I, J.Min. Sci., 2012, no. 2, pp. 203–222.CrossRef
    29.Adushkin, V.V. and Oparin, V.N., From the Alternating-Sign Explosion Response of Rocks to the Pendulum Waves in Stressed Geomedia, Part II, J. Min. Sci., 2013, no. 2, pp. 175–209.CrossRef
    30.Adushkin, V.V. and Oparin, V.N., From the Alternating-Sign Explosion Response of Rocks to the Pendulum Waves in Stressed Geomedia, Part III, J. Min. Sci., 2014, no. 4, pp. 623–645.CrossRef
    31.Yingwei Shi, Qun He, Shanjun Liu, and Lixin Wu, The Time–Space Relationship between Strain, Temperature and Acoustic Emission of Loaded Rock, Progress in Electromagnetics Research Symposium, China, 2010.
    32.Kyu, N.G., Particular Issues Associated with Fluid-Fracturing of Rocks by Plastic Materials, J. Min. Sci., 2011, vol. 47, no. 4, pp. 450–459.CrossRef
  • 作者单位:V. N. Oparin (1) (2)
    V. I. Vostrikov (1)
    O. M. Usol’tseva (1)
    P. A. Tsoi (1) (3)
    V. N. Semenov (1)

    1. Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences, Krasnyi pr. 54, Novosibirsk, 630091, Russia
    2. Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090, Russia
    3. Novosibirsk State Technical University, pr. K. Marks 20, Novosibirsk, 630073, Russia
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Geotechnical Engineering
    Geophysics and Geodesy
    Mathematical Applications in Geosciences
    Mineral Resources
    Russian Library of Science
  • 出版者:Springer New York
  • ISSN:1573-8736
文摘
The authors have developed a procedure and a test bench for studying evolution of various nature physical fields in modeling geomedium fracture by fluids. The test bench performs synchronous recording of macro- and micro-deformation, heat and acoustic emission induced in physical models of geomedium under loading to discontinuity. The experimental procedure has been trialed. The analysis of the synchronized test data allows a conclusion on the existence of time–space relationship between different nature physical fields induced during failure of solids. Keywords Physical model laboratory experiment deformation fluid-induced fracture acoustic emission speckle-method test bench stress–strain state evolution physical fields interrelationship

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700