Oppositional COMT Val158Met effects on resting state functional connectivity in adolescents and adults
详细信息    查看全文
  • 作者:Bernhard M. Meyer ; Julia Huemer ; Ulrich Rabl…
  • 关键词:Catechol ; O ; methyltransferase ; Dopamine ; Adolescents ; Cognition ; Functional neuroimaging ; Magnetic resonance imaging
  • 刊名:Brain Structure and Function
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:221
  • 期:1
  • 页码:103-114
  • 全文大小:3,141 KB
  • 参考文献:Andersen SL, Dumont NL, Teicher MH (1997) Developmental differences in dopamine synthesis inhibition by (+/−)-7-OH-DPAT. Naunyn-Schmiedeberg’s Arch Pharmacol 356:173–181CrossRef
    Andrews-Hanna JR, Saxe R, Yarkoni T (2014) Contributions of episodic retrieval and mentalizing to autobiographical thought: evidence from functional neuroimaging, resting-state connectivity, and fMRI meta-analyses. NeuroImage 91:324–335. doi:10.​1016/​j.​neuroimage.​2014.​01.​032 PubMedCentral CrossRef PubMed
    Apud JA et al (2007) Tolcapone improves cognition and cortical information processing in normal human subjects. Neuropsychopharmacology 32:1011–1020. doi:10.​1038/​sj.​npp.​1301227 CrossRef PubMed
    Arnsten AF (1997) Catecholamine regulation of the prefrontal cortex J Psychopharmacol 11:151–162PubMed
    Barnett JH, Heron J, Ring SM, Golding J, Goldman D, Xu K, Jones PB (2007) Gender-specific effects of the catechol-O-methyltransferase Val108/158Met polymorphism on cognitive function in children. Am J Psychiatry 164:142–149. doi:10.​1176/​appi.​ajp.​164.​1.​142 CrossRef PubMed
    Beckmann CF, DeLuca M, Devlin JT, Smith SM (2005) Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond Ser B Biol Sci 360:1001–1013. doi:10.​1098/​rstb.​2005.​1634 CrossRef
    Bertolino A et al (2006) Prefrontal–hippocampal coupling during memory processing is modulated by COMT val158met genotype. Biol Psychiatry 60:1250–1258. doi:10.​1016/​j.​biopsych.​2006.​03.​078 CrossRef PubMed
    Biswal BB et al (2010) Toward discovery science of human brain function. Proc Natl Acad Sci USA 07(10):4734–4739. doi:10.​1073/​pnas.​0911855107 CrossRef
    Boubela RN et al (2012) A highly parallelized framework for computationally intensive MR data analysis. Magma 25:313–320. doi:10.​1007/​s10334-011-0290-7 CrossRef PubMed
    Boubela RN, Kalcher K, Huf W, Kronnerwetter C, Filzmoser P, Moser E (2013) Beyond noise: using temporal ICA to extract meaningful information from high-frequency fMRI signal fluctuations during rest. Front Hum Neurosci 7:168. doi:10.​3389/​fnhum.​2013.​00168 PubMedCentral CrossRef PubMed
    Braun U et al (2012) Test–retest reliability of resting-state connectivity network characteristics using fMRI and graph theoretical measures. NeuroImage 59:1404–1412. doi:10.​1016/​j.​neuroimage.​2011.​08.​044 CrossRef PubMed
    Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 1124:1–38. doi:10.​1196/​annals.​1440.​011 CrossRef PubMed
    Callicott JH et al (2000) Physiological dysfunction of the dorsolateral prefrontal cortex in schizophrenia revisited. Cereb Cortex 10:1078–1092CrossRef PubMed
    Cole DM, Oei NY, Soeter RP, Both S, van Gerven JM, Rombouts SA, Beckmann CF (2013) Dopamine-dependent architecture of cortico-subcortical network connectivity. Cereb Cortex 23:1509–1516. doi:10.​1093/​cercor/​bhs136 CrossRef PubMed
    Cools R, D’Esposito M (2011) Inverted-U-shaped dopamine actions on human working memory and cognitive control. Biol Psychiatry 69:e113–e125. doi:10.​1016/​j.​biopsych.​2011.​03.​028 PubMedCentral CrossRef PubMed
    Dang LC, O’Neil JP, Jagust WJ (2012) Dopamine supports coupling of attention-related networks. J Neurosci 32:9582–9587. doi:10.​1523/​JNEUROSCI.​0909-12.​2012 PubMedCentral CrossRef PubMed
    Delvaux E, Bentley K, Stubbs V, Sabbagh M, Coleman PD (2013) Differential processing of amyloid precursor protein in brain and in peripheral blood leukocytes. Neurobiol Aging 34:1680–1686. doi:10.​1016/​j.​neurobiolaging.​2012.​12.​004 PubMedCentral CrossRef PubMed
    Dumontheil I, Roggeman C, Ziermans T, Peyrard-Janvid M, Matsson H, Kere J, Klingberg T (2011) Influence of the COMT genotype on working memory and brain activity changes during development. Biol Psychiatry 70:222–229. doi:10.​1016/​j.​biopsych.​2011.​02.​027 CrossRef PubMed
    Egan MF et al (2001) Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc Natl Acad Sci USA 98:6917–6922. doi:10.​1073/​pnas.​111134598 PubMedCentral CrossRef PubMed
    Fair DA et al (2008) The maturing architecture of the brain’s default network. Proc Natl Acad Sci USA 105:4028–4032. doi:10.​1073/​pnas.​0800376105 PubMedCentral CrossRef PubMed
    Floresco SB, Phillips AG (2001) Delay-dependent modulation of memory retrieval by infusion of a dopamine D1 agonist into the rat medial prefrontal cortex. Behav Neurosci 115:934–939CrossRef PubMed
    Goldman-Rakic PS, Muly EC 3rd, Williams GV (2000) D(1) receptors in prefrontal cells and circuits. Brain Res Rev 31:295–301CrossRef PubMed
    Gothelf D et al (2005) COMT genotype predicts longitudinal cognitive decline and psychosis in 22q11.2 deletion syndrome. Nat Neurosci 8:1500–1502. doi:10.​1038/​nn1572 CrossRef PubMed
    Gothelf D et al (2013) Biological effects of COMT haplotypes and psychosis risk in 22q11.2 deletion syndrome. Biol Psychiatry. doi:10.​1016/​j.​biopsych.​2013.​07.​021
    Grateron L et al (2003) Postnatal development of calcium-binding proteins immunoreactivity (parvalbumin, calbindin, calretinin) in the human entorhinal cortex. J Chem Neuroanat 26:311–316CrossRef PubMed
    Honea R et al (2009) Impact of interacting functional variants in COMT on regional gray matter volume in human brain. Neuroimage 45:44–51. doi:10.​1016/​j.​neuroimage.​2008.​10.​064 PubMedCentral CrossRef PubMed
    Jo HJ, Saad ZS, Simmons WK, Milbury LA, Cox RW (2010) Mapping sources of correlation in resting state FMRI, with artifact detection and removal. NeuroImage 52:571–582. doi:10.​1016/​j.​neuroimage.​2010.​04.​246 PubMedCentral CrossRef PubMed
    Kasess CH, Stephan KE, Weissenbacher A, Pezawas L, Moser E, Windischberger C (2010) Multi-subject analyses with dynamic causal modeling. NeuroImage 49:3065–3074. doi:10.​1016/​j.​neuroimage.​2009.​11.​037 PubMedCentral CrossRef PubMed
    Kelly AM et al (2009) Development of anterior cingulate functional connectivity from late childhood to early adulthood. Cereb Cortex 19:640–657. doi:10.​1093/​cercor/​bhn117 CrossRef PubMed
    Krach S et al (2010) COMT genotype and its role on hippocampal-prefrontal regions in declarative memory. NeuroImage 53:978–984. doi:10.​1016/​j.​neuroimage.​2009.​12.​090 CrossRef PubMed
    Kriegeskorte N, Simmons WK, Bellgowan PS, Baker CI (2009) Circular analysis in systems neuroscience: the dangers of double dipping. Nat Neurosci 12:535–540. doi:10.​1038/​nn.​2303 PubMedCentral CrossRef PubMed
    Laatikainen LM, Sharp T, Harrison PJ, Tunbridge EM (2013) Sexually dimorphic effects of catechol-O-methyltransferase (COMT) inhibition on dopamine metabolism in multiple brain regions. PLoS ONE 8:e61839. doi:10.​1371/​journal.​pone.​0061839 PubMedCentral CrossRef PubMed
    Lacadie CM, Fulbright RK, Rajeevan N, Constable RT, Papademetris X (2008) More accurate Talairach coordinates for neuroimaging using non-linear registration. NeuroImage 42:717–725. doi:10.​1016/​j.​neuroimage.​2008.​04.​240 PubMedCentral CrossRef PubMed
    Lachman HM, Papolos DF, Saito T, Yu YM, Szumlanski CL, Weinshilboum RM (1996) Human catechol-O-methyltransferase pharmacogenetics: description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenetics 6:243–250CrossRef PubMed
    Lambe EK, Krimer LS, Goldman-Rakic PS (2000) Differential postnatal development of catecholamine and serotonin inputs to identified neurons in prefrontal cortex of rhesus monkey. J Neurosci 20:8780–8787PubMed
    Lee TW, Yu YW, Hong CJ, Tsai SJ, Wu HC, Chen TJ (2011) The effects of catechol-O-methyl-transferase polymorphism Val158Met on functional connectivity in healthy young females: a resting EEG study. Brain Res 1377:21–31. doi:10.​1016/​j.​brainres.​2010.​12.​073 CrossRef PubMed
    Liu B, Song M, Li J, Liu Y, Li K, Yu C, Jiang T (2010) Prefrontal-related functional connectivities within the default network are modulated by COMT val158met in healthy young adults. J Neurosci 30:64–69. doi:10.​1523/​JNEUROSCI.​3941-09.​2010 CrossRef PubMed
    Lotta T, Vidgren J, Tilgmann C, Ulmanen I, Melen K, Julkunen I, Taskinen J (1995) Kinetics of human soluble and membrane-bound catechol O-methyltransferase: a revised mechanism and description of the thermolabile variant of the enzyme. Biochemistry 34:4202–4210CrossRef PubMed
    Manoach DS et al (1999) Schizophrenic subjects activate dorsolateral prefrontal cortex during a working memory task, as measured by fMRI. Biol Psychiatry 45:1128–1137CrossRef PubMed
    Marrelec G, Krainik A, Duffau H, Pelegrini-Issac M, Lehericy S, Doyon J, Benali H (2006) Partial correlation for functional brain interactivity investigation in functional MRI. NeuroImage 32:228–237. doi:10.​1016/​j.​neuroimage.​2005.​12.​057 CrossRef PubMed
    Mattay VS et al (2003) Catechol O-methyltransferase val158-met genotype and individual variation in the brain response to amphetamine. Proc Natl Acad Sci USA 100:6186–6191. doi:10.​1073/​pnas.​0931309100 PubMedCentral CrossRef PubMed
    Meyer F, Louilot A (2014) Consequences at adulthood of transient inactivation of the parahippocampal and prefrontal regions during early development: new insights from a disconnection animal model for schizophrenia. Front Behav Neurosci 7:118. doi:10.​3389/​fnbeh.​2013.​00118 CrossRef PubMed
    Meyer-Lindenberg A et al (2005) Midbrain dopamine and prefrontal function in humans: interaction and modulation by COMT genotype. Nat Neurosci 8:594–596. doi:10.​1038/​nn1438 CrossRef PubMed
    Mier D, Kirsch P, Meyer-Lindenberg A (2010) Neural substrates of pleiotropic action of genetic variation in COMT: a meta-analysis. Mol Psychiatry 15:918–927. doi:10.​1038/​mp.​2009.​36 CrossRef PubMed
    Minzenberg MJ, Yoon JH, Carter CS (2011) Modafinil modulation of the default mode network. Psychopharmacology 215:23–31. doi:10.​1007/​s00213-010-2111-5 PubMedCentral CrossRef PubMed
    Peterschmitt Y, Meyer F, Louilot A (2007) Neonatal functional blockade of the entorhinal cortex results in disruption of accumbal dopaminergic responses observed in latent inhibition paradigm in adult rats. Eur J Neurosci 25:2504–2513. doi:10.​1111/​j.​1460-9568.​2007.​05503.​x CrossRef PubMed
    Pomarol-Clotet E et al (2010) COMT Val158Met polymorphism in relation to activation and de-activation in the prefrontal cortex: a study in patients with schizophrenia and healthy subjects. NeuroImage 53:899–907. doi:10.​1016/​j.​neuroimage.​2010.​04.​018 CrossRef PubMed
    Rabl U et al (2014) Additive gene-environment effects on hippocampal structure in healthy humans. J Neurosci 34(30):9917–9926. doi:10.​1523/​JNEUROSCI.​3113-13 PubMedCentral CrossRef PubMed
    Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci USA 98:676–682. doi:10.​1073/​pnas.​98.​2.​676 PubMedCentral CrossRef PubMed
    Robbins TW (2000) Chemical neuromodulation of frontal-executive functions in humans and other animals. Exp Brain Res 133:130–138CrossRef PubMed
    Rosenberg DR, Lewis DA (1994) Changes in the dopaminergic innervation of monkey prefrontal cortex during late postnatal development: a tyrosine hydroxylase immunohistochemical study. Biol Psychiatry 36:272–277CrossRef PubMed
    Rosenberg DR, Lewis DA (1995) Postnatal maturation of the dopaminergic innervation of monkey prefrontal and motor cortices: a tyrosine hydroxylase immunohistochemical analysis. J Comp Neurol 358:383–400. doi:10.​1002/​cne.​903580306 CrossRef PubMed
    Ruiz-Sanz JI, Aurrekoetxea I, Ruiz del Agua A, Ruiz-Larrea MB (2007) Detection of catechol-O-methyltransferase Val158Met polymorphism by a simple one-step tetra-primer amplification refractory mutation system-PCR. Mol Cell Probes 21:202–207. doi:10.​1016/​j.​mcp.​2006.​12.​001 CrossRef PubMed
    Sambataro F et al (2009) Catechol-O-methyltransferase valine(158)methionine polymorphism modulates brain networks underlying working memory across adulthood. Biol Psychiatry 66:540–548. doi:10.​1016/​j.​biopsych.​2009.​04.​014 PubMedCentral CrossRef PubMed
    Satterthwaite TD et al (2012) Impact of in-scanner head motion on multiple measures of functional connectivity: relevance for studies of neurodevelopment in youth. NeuroImage 60:623–632. doi:10.​1016/​j.​neuroimage.​2011.​12.​063 PubMedCentral CrossRef PubMed
    Scharinger et al (2014) Platelet serotonin transporter function predicts default-mode network activity. PLoS One 9(3):e92543. doi:10.​1371/​journal.​pone.​0092543
    Schumann G et al (2010) The IMAGEN study: reinforcement-related behaviour in normal brain function and psychopathology. Mol Psychiatry 15:1128–1139. doi:10.​1038/​mp.​2010.​4 CrossRef PubMed
    Sesack SR, Hawrylak VA, Matus C, Guido MA, Levey AI (1998) Dopamine axon varicosities in the prelimbic division of the rat prefrontal cortex exhibit sparse immunoreactivity for the dopamine transporter. J Neurosci 18:2697–2708PubMed
    Sheline YI, Price JL, Yan Z, Mintun MA (2010) Resting-state functional MRI in depression unmasks increased connectivity between networks via the dorsal nexus. Proc Natl Acad Sci USA 107:11020–11025. doi:10.​1073/​pnas.​1000446107 PubMedCentral CrossRef PubMed
    Smith SM et al (2009) Correspondence of the brain’s functional architecture during activation and rest. Proc Natl Acad Sci USA 106:13040–13045. doi:10.​1073/​pnas.​0905267106 PubMedCentral CrossRef PubMed
    Smith JF, Pillai A, Chen K, Horwitz B (2010) Identification and validation of effective connectivity networks in functional magnetic resonance imaging using switching linear dynamic systems. NeuroImage 52:1027–1040. doi:10.​1016/​j.​neuroimage.​2009.​11.​081 PubMedCentral CrossRef PubMed
    Smith SM et al (2011) Network modelling methods for FMRI. NeuroImage 54:875–891. doi:10.​1016/​j.​neuroimage.​2010.​08.​063 CrossRef PubMed
    Smolker HR, Depue BE, Reineberg AE, Orr JM, Banich MT (2014) Individual differences in regional prefrontal gray matter morphometry and fractional anisotropy are associated with different constructs of executive function. Brain Struct Funct. doi:10.​1007/​s00429-014-0723-y PubMedCentral PubMed
    Smucny J, Wylie KP, Tregellas JR (2014) Functional magnetic resonance imaging of intrinsic brain networks for translational drug discovery. Trends Pharmacol Sci. doi:10.​1016/​j.​tips.​2014.​05.​001 PubMedCentral PubMed
    Squire LR, Stark CE, Clark RE (2004) The medial temporal lobe. Annu Rev Neurosci 27:279–306. doi:10.​1146/​annurev.​neuro.​27.​070203.​144130 CrossRef PubMed
    Tarazi FI, Tomasini EC, Baldessarini RJ (1999) Postnatal development of dopamine D1-like receptors in rat cortical and striatolimbic brain regions: an autoradiographic study. Dev Neurosci 21:43–49. doi:10.​1159/​000017365
    Teicher MH, Barber NI, Gelbard HA, Gallitano AL, Campbell A, Marsh E, Baldessarini RJ (1993) Developmental differences in acute nigrostriatal and mesocorticolimbic system response to haloperidol. Neuropsychopharmacology 9:147–156. doi:10.​1038/​npp.​1993.​53 CrossRef PubMed
    Tian T, Qin W, Liu B, Jiang T, Yu C (2013) Functional connectivity in healthy subjects is nonlinearly modulated by the COMT and DRD2 polymorphisms in a functional system-dependent manner. J Neurosci 33:17519–17526. doi:10.​1523/​JNEUROSCI.​2163-13.​2013 CrossRef PubMed
    Tunbridge EM, Lane TA, Harrison PJ (2007) Expression of multiple catechol-O-methyltransferase (COMT) mRNA variants in human brain. Am J Med Genet Part B Neuropsychiatr Genet 144B:834–839. doi:10.​1002/​ajmg.​b.​30539 CrossRef
    Tunbridge EM, Farrell SM, Harrison PJ, Mackay CE (2013) Catechol-O-methyltransferase (COMT) influences the connectivity of the prefrontal cortex at rest. NeuroImage 68:49–54. doi:10.​1016/​j.​neuroimage.​2012.​11.​059 PubMedCentral CrossRef PubMed
    Van Dijk KR, Sabuncu MR, Buckner RL (2012) The influence of head motion on intrinsic functional connectivity MRI. NeuroImage 59:431–438. doi:10.​1016/​j.​neuroimage.​2011.​07.​044 PubMedCentral CrossRef PubMed
    Verma A, Moghaddam B (1996) NMDA receptor antagonists impair prefrontal cortex function as assessed via spatial delayed alternation performance in rats: modulation by dopamine. J Neurosci 16:373–379PubMed
    Wahlstrom D, Collins P, White T, Luciana M (2010) Developmental changes in dopamine neurotransmission in adolescence: behavioral implications and issues in assessment. Brain Cogn 72:146–159. doi:10.​1016/​j.​bandc.​2009.​10.​013 PubMedCentral CrossRef PubMed
    Ward AM, Schultz AP, Huijbers W, Van Dijk KR, Hedden T, Sperling RA (2013) The parahippocampal gyrus links the default-mode cortical network with the medial temporal lobe memory system. Hum Brain Mapp. doi:10.​1002/​hbm.​22234 PubMedCentral PubMed
    Williams GV, Goldman-Rakic PS (1995) Modulation of memory fields by dopamine D1 receptors in prefrontal cortex. Nature 376:572–575. doi:10.​1038/​376572a0 CrossRef PubMed
    Yavich L, Forsberg MM, Karayiorgou M, Gogos JA, Mannisto PT (2007) Site-specific role of catechol-O-methyltransferase in dopamine overflow within prefrontal cortex and dorsal striatum. J Neurosci 27:10196–10209. doi:10.​1523/​JNEUROSCI.​0665-07.​2007 CrossRef PubMed
    Zahrt J, Taylor JR, Mathew RG, Arnsten AF (1997) Supranormal stimulation of D1 dopamine receptors in the rodent prefrontal cortex impairs spatial working memory performance. J Neurosci 17:8528–8535PubMed
  • 作者单位:Bernhard M. Meyer (1)
    Julia Huemer (2)
    Ulrich Rabl (1)
    Roland N. Boubela (3)
    Klaudius Kalcher (3)
    Andreas Berger (1)
    Tobias Banaschewski (4)
    Gareth Barker (5)
    Arun Bokde (6)
    Christian Büchel (7)
    Patricia Conrod (8)
    Sylvane Desrivières (5)
    Herta Flor (4)
    Vincent Frouin (9)
    Jurgen Gallinat (10)
    Hugh Garavan (11)
    Andreas Heinz (10)
    Bernd Ittermann (12)
    Tianye Jia (5)
    Mark Lathrop (13)
    Jean-Luc Martinot (14)
    Frauke Nees (4)
    Marcella Rietschel (4)
    Michael N. Smolka (15)
    Lucie Bartova (1)
    Ana Popovic (1)
    Christian Scharinger (1)
    Harald H. Sitte (16)
    Hans Steiner (17)
    Max H. Friedrich (2)
    Siegfried Kasper (1)
    Thomas Perkmann (18)
    Nicole Praschak-Rieder (1)
    Helmuth Haslacher (18)
    Harald Esterbauer (18)
    Ewald Moser (3)
    Gunter Schumann (5)
    Lukas Pezawas (1)

    1. Department of Psychiatry and Psychotherapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
    2. Department of Child and Adolescent Psychiatry, Medical University of Vienna, Vienna, Austria
    3. MR Centre of Excellence, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
    4. Central Institute of Mental Health, Faculty of Clinical Medicine Mannheim, Heidelberg University, Mannheim, Germany
    5. Institute of Psychiatry, King’s College, London, UK
    6. Institute of Neuroscience, Trinity College, Dublin, Ireland
    7. University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
    8. Department of Psychiatry, Université de Montreal, CHU St. Justine Hospital, Montreal, Canada
    9. Neurospin, Commissariat à l’Energie Atomique, CEA-Saclay Center, Paris, France
    10. Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Berlin, Germany
    11. Department of Psychiatry and Psychology, University of Vermont, Burlington, USA
    12. Physikalisch-Technische Bundesanstalt, Berlin, Germany
    13. McGill University and Génome Québec Innovation Centre, Montreal, Canada
    14. Institut National de la Santé et de la Recherche Médicale, INSERM CEA Unit 1000 “Imaging and Psychiatry”, Orsay, France
    15. Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
    16. Center for Biomolecular Medicine and Pharmacology, Medical University of Vienna, Vienna, Austria
    17. Department of Psychiatry and Behavioral Sciences, Division of Child and Adolescent Psychiatry and Child Development, Stanford University School of Medicine, Stanford, USA
    18. Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
  • 刊物主题:Neurosciences; Cell Biology; Neurology;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1863-2661
文摘
Prefrontal dopamine levels are relatively increased in adolescence compared to adulthood. Genetic variation of COMT (COMT Val158Met) results in lower enzymatic activity and higher dopamine availability in Met carriers. Given the dramatic changes of synaptic dopamine during adolescence, it has been suggested that effects of COMT Val158Met genotypes might have oppositional effects in adolescents and adults. The present study aims to identify such oppositional COMT Val158Met effects in adolescents and adults in prefrontal brain networks at rest. Resting state functional connectivity data were collected from cross-sectional and multicenter study sites involving 106 healthy young adults (mean age 24 ± 2.6 years), gender matched to 106 randomly chosen 14-year-olds. We selected the anterior medial prefrontal cortex (amPFC) as seed due to its important role as nexus of the executive control and default mode network. We observed a significant age-dependent reversal of COMT Val158Met effects on resting state functional connectivity between amPFC and ventrolateral as well as dorsolateral prefrontal cortex, and parahippocampal gyrus. Val homozygous adults exhibited increased and adolescents decreased connectivity compared to Met homozygotes for all reported regions. Network analyses underscored the importance of the parahippocampal gyrus as mediator of observed effects. Results of this study demonstrate that adolescent and adult resting state networks are dose-dependently and diametrically affected by COMT genotypes following a hypothetical model of dopamine function that follows an inverted U-shaped curve. This study might provide cues for the understanding of disease onset or dopaminergic treatment mechanisms in major neuropsychiatric disorders such as schizophrenia and attention deficit hyperactivity disorder. Keywords Catechol-O-methyltransferase Dopamine Adolescents Cognition Functional neuroimaging Magnetic resonance imaging

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700