Nonadiabatic tapered optical fiber for biosensor applications
详细信息    查看全文
  • 作者:Hamid Latifi (1) latifi@sbu.ac.ir
    Mohammad I. Zibaii (13)
    Seyed M. Hosseini (2)
    Pedro Jorge (3)
  • 关键词:Biconical tapered optical fiber &#8211 ; nonadiabatic &#8211 ; refractive index &#8211 ; biosensor
  • 刊名:Photonic Sensors
  • 出版年:2012
  • 出版时间:December 2012
  • 年:2012
  • 卷:2
  • 期:4
  • 页码:340-356
  • 全文大小:1.1 MB
  • 参考文献:1. M. D. Marazuela and M. C. Moreno-Bondi, “Fiber-optic biosensors — an overview,” Analytical and Bioanalytical Chemistry, vol. 372, no. 5–6, pp. 664–682, 2002.
    2. A. M. Valadez, C. A. Lana, S. I. Tu, M. T. Morgan, and A. K. Bhunia, “Evanescent wave fiber optic biosensor for Salmonella detection in food,” Sensors, vol. 9, no. 7, pp. 5810–5824, 2009.
    3. A. W. Snyder and J. D. Love, Optical Waveguide Theory. London: Chapman and Hall, 1983.
    4. W. J. Stewart and J. D. Love, “Design limitation on tapers and couplers in singlemode fiber tapers,” in Proc. ECOC 85, Venice, Oct. 1–4, pp. 559–562, 1985.
    5. J. D. Love and W. M. Henry, “Quantifying loss minimisation in single-mode fiber tapers,” Electronics Letters, vol. 22, no. 17, pp. 912–914, 1986.
    6. M. Sumetsky, Y. Dulashko, and A. Hale, “Fabrication and study of bent and coiled free silica nanowires: self-coupling microloop optical interferometer,” Optics Express, vol. 12, no. 15, pp. 3521–3531, 2004.
    7. L. Shi, X. Chen, H. Liu, Y. Chen, Z. Ye, W. Liao, et al., “Fabrication of submicron-diameter silica fibers using electric strip heater,” Optics Express, vol.14, no. 12, pp. 5055–5060, 2006.
    8. E. J. Zhang, W. D. Sacher, and J. K. Poon, “Hydrofluoric acid flow etching of low-loss subwavelength-diameter biconical fiber tapers,” Optics Express, vol. 18, no. 21, pp. 22593–22598, 2010.
    9. S. Pricking and H. Giessen, “Tapering fibers with complex shape,” Optics Express, vol. 18, no. 4, pp. 3426–3437, 2010.
    10. V. P. Minkovich and D. Monz贸n-Hern谩ndez, “Microstructured optical fiber coated with thin films for gas and chemical sensing,” Optics Express, vol. 14, no. 18, pp. 8413–8418, 2006.
    11. J. Ju, L. Ma, and W. Jin, “Photonic bandgap fiber tapers and interferometric sensors,” in Proc. SPIE, vol. 7503, pp.75035B-1–75035B-4, 2009.
    12. M. I. Zibaii, H. Latifi, K. Karami, M. Gholami, S. M. Hosseini, and M. H. Ghezelayagh, “Non-adiabatic tapered optical fiber sensor for measuring the interaction between α-amino acids in aqueous carbohydrate solution,” Measurement and Science Technology, vol. 21, no. 10, pp. 105801, 2010.
    13. J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibers and devices: part 1. adiabaticity criteria,” IEE Proc. J. Optoelectronics, vol. 138, no. 5, pp. 343–354, 1991.
    14. R. J. Black, S. Lacroix, F. Gonthier, and J. D. Love, “1991 tapered single mode fibers and devices: part 2. experimental and theoretical quantification,” IEE Proc. J Optoelectronics, vol. 138, no. 5, pp. 355–364, 1991.
    15. I. M. White, H. Oveys, and X. Fan, “Liquid-coreoptical ring-resonator sensors,” Optics Letters, vol.31, no. 9, pp. 1319–1321, 2006.
    16. A. M. Armani and K. J. Vahala, “Heavy water detection using ultra-high-Q microcavities,” Optics Letters, vol. 31, no. 12, pp. 1896–1898, 2006.
    17. D. Keng, S. R. McAnanama, I. Teraoka, and S. Arnold, “Resonance fluctuations of a whispering gallery mode biosensor by particles undergoing Brownian motion,” Applied Physics Letters, vol. 91, no. 10, pp. 103902-1–103902-3, 2007.
    18. J. Yi, C. Y. Jao, I. L. N. Kandas, B. Liu, Y. Xu, and H. D. Robinson, “Irreversible adsorption of gold nanospheres on fiber optical tapers and microspheres,” Applied Physics Letters, vol. 100, no. 15, pp.153107-1–153107-4, 2012.
    19. F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Applied Physics Letters, vol. 80, no. 21, pp. 4057–4059, 2002.
    20. K. Q. Kieu and M. Mansuripur, “Biconical fiber taper sensor,” IEEE Photonics Technology Letters, vol. 18, no. 21, pp. 2239–2241, 2006.
    21. P. Datta, C. Matias, C. Aramburu, A. Bakas, M. Lopez-Amo, and J. M. Oton, “Tapered optical fiber temperature sensor,” Microwave Optical Technology Letters, vol. 11, no. 2, pp. 93–95, 1996.
    22. J. M. Corres, J. Bravo, I. R. Matias, and F. J. Arregui, “Nonadiabatic tapered single-mode fiber coated with humidity sensitive nanofilms,” IEEE Photonics Technology Letters, vol. 18, no. 8, pp.935–937, 2006.
    23. B. S. Kawasaki, K. O. Hill, and R. C. Lamont, “Biconical taper single-mode fiber coupler,” Optics Letter, vol. 6, no. 7, pp. 327–328, 1981.
    24. W. Bums, M. Abebe, C. Villarruel, and R. Moeller, “Loss mechanisms in single-mode tapers,” Journal of Lightwave Technology, vol. 4, no. 6, pp. 608–613, 1986.
    25. L. C. Bobb, P. M. Shankar, and H. D. Krumboltz., “Bending effects in biconically tapered single-mode fibers,” Journal of Lightwave Technology, vol. 8, no. 7, pp. 1084–1090, 1990.
    26. F. Gonthier, A. Henault, S. Lacroix, R. J. Black, and J. Bures, “Mode coupling in nonuniform fibers: comparison between coupled-mode theory and finite-difference beam-propagation method simulations,” Optical Society of America B: Optical Physics, vol. 8, no. 2, pp. 416–421, 1991.
    27. P. N. Moar, S. T. Huntington, J. Katsifolis, L. W. Cahill, A. Roberts, and K. A. Nugent, “Fabrication, modeling, and direct evanescent field measurement of tapered optical fiber sensors,” Journal of Applied Physics, vol. 85, no. 7, pp. 3395–3398, 1999.
    28. A. J. Fielding and C. C. Davis, “Tapered single-mode optical fiber evanescent coupling,” IEEE Photonics Technology Letters, vol. 14, no. 1, pp. 53–55, 2002.
    29. I. R. Matias, C. F. Valdivielso, F. J. Arregui, C. Bariain, and M. L. Amo, “Transmitted optical power through a tapered single-mode fiber under dynamic bending effects,” Fiber and Integrated Optics, vo. 22, no. 3, pp. 173–187, 2003.
    30. M. Ahmad and L. L. Hench, “Effect of taper geometries and launch angle on evanescent wave penetration depth in optical fibers,” Biosensors and Bioelectronics, vol. 20, no. 7, pp. 1312–1319, 2005.
    31. A. J. C. Tubb, F. P. Payne, R. Millington, and C. R. Lowe, “Singlemode optical fiber surface plasma wave chemical sensor,” Electronics Letters, vol. 31 no. 20, pp. 1770–1771, 1995.
    32. 脫. Esteban, N. D铆az-Herrera, M. C. Navarrete, and A. Gonz谩lez-Cano, “Surface plasmon resonance sensors based on uniform-waist tapered fibers in a reflective configuration,” Applied Optics, vol. 45, no. 28, pp. 7294–7298, 2006.
    33. R. K. Verma, A. K. Sharma, and B. D. Gupta, “Surface plasmon resonance based tapered fiber optic sensor with different taper profiles,” Optics Communications, vol. 281, no. 6, pp. 1486–1491, 2008.
    34. N. D铆az-Herrera, A. Gonz谩lez-Cano, D. Viegas, J. Lu铆s. Santos, and M. C. Navarrete, “Refractive index sensing of aqueous media based on plasmonic resonance in tapered optical fibers operating in the 1.5 μm region,” Sensors and Actuators B: Chemical, vol. 146, no. 1, pp. 195–198.
    35. N. D铆az-Herrera, O. Esteban, M. C. Navarrete, A. Gonz谩lez-Cano, E. Benito-Pena, and G. Orellana, “Improved performance of SPR sensors by a chemical etching of tapered optical fibers,” Optics and Lasers in Engineering, vol. 49, no. 8, pp. 1065–1068, 2011.
    36. A. Kumar, T. V. B. Subrahmonium, A. D. Sharma, K. Thyagarajan, B. P. Pal, and I. C. Goyal, “Novel refractometer using a tapered optical fiber,” Electronics Letters, vol. 20, no. 13, pp. 534–535, 1984.
    37. J. Villiatoro, D. Monzoon-Hernandez, and D. Talavera, “High resolution refractive index sensing with cladded multimode tapered optical fiber,” Electronics Letters, vol. 40, no. 2, pp.106–107, 2004.
    38. P. Wang, G. Brambilla, M. Ding, Y. Semenova, and Q. Wu, G. Farrell, “High-sensitivity, evanescent field refractometric sensor based on a tapered, multimode fiber interference,” Optics Letters, vol. 36, no. 12, pp. 2233–2235, 2011.
    39. P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, “Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels,” Optics Letters, vol. 30, no. 11, pp. 1273–1275, 2005.
    40. J. Arrue, F. Jim茅nez, G. Aldabaldetreku, G. Durana, J. Zubia, M. Lomer, et al., “Analysis of the use of tapered graded-index polymer optical fibers for refractive-index sensors,” Optics Express, vol. 16, no. 21, pp. 16616–16631, 2008.
    41. A. Leung, P. Mohana Shankar, and R. Mutharasan, “Model protein detection using antibody-immobilized tapered fiber optic biosensors (TFOBS) in a flow cell at 1310 nm and 1550 nm,” Sensors and Actuators B: Chemical, vol. 129, no. 2, pp. 716–725, 2008.
    42. G. Cohoon, C. Boyter, M. Errico, K. Vandervoort, and E. Salik, “Enhancing sensitivity of biconical tapered fiber sensors with multiple passes through the taper,” Optical Engineering, vol. 49, no. 3, pp. 034401–5, 2010.
    43. H. A. Rahman, S. W. Harun, M. Yasin, S. W. Phang, S. S. A. Damanhuri, H. Arof, et al., “Tapered plastic multimode fiber sensor for salinity detection,” Sensors and Actuators A: Physical, vol. 171, no. 2, pp. 219–222, 2011.
    44. C. Beres, F. V. B. Nazar茅, N. C. C. Souza, M. A. L. Miguel, and M. M. Werneck, “Tapered plastic optical fiber-based biosensor — tests and application,” Biosensors and Bioelectronics, vol. 30, no. 1, pp. 328–332, 2011.
    45. J. F. Ding, A. P. Zhang, L. Y. Shao, J. H. Yan, and S. He, “Fiber-taper seeded long-period grating pair as a highly sensitive refractive-index sensor,” IEEE Photonics Technology Letters, vol. 17, no. 6, pp. 1247–1249, 2005.
    46. T. Allsop, F. Floreani, K. P. Jedrzejewski, P. V. S. Marques, R. Romero, D. J. Webb, et al., “Spectral characteristics of tapered LPG device as a sensing element for refractive index and temperature,” Journal of Lightwave Technology, vol. 24, no. 2, pp. 870–878, 2006.
    47. D. Grobnic, S. J. Mihailov, D. Huimin, and C. W. Smelser, “Bragg grating evanescent field sensor made in biconical tapered fiber with femtosecond IR radiation,” IEEE Photonics Technology Letters, vol. 18, no. 1, pp. 160–162, 2006.
    48. W. Liang, Y. Y. Huang, Y. Xu, K. L. Reginald, and Y. Amnon, “Highly sensitive fiber Bragg grating refractive index sensors,” Applied Physics Letters, vol. 86, no. 15, pp. 151122-1–151122-3, 2005.
    49. X. Fang, C. R. Liao, and D. N. Wang “Femtosecond laser fabricated fiber Bragg grating in microfiber for refractive index sensing,” Optics Letters, vol. 35, no. 7, pp. 1007–1009, 2010.
    50. M. I. Zibaii, O. Fraz茫o, H. Latifi, and P. A. S. Jorge, “Controlling the sensitivity of refractive index measurement using a tapered fiber loop mirror,” IEEE Photonics Technology Letters, vol. 23, no. 17, pp. 1219–1221, 2011.
    51. O. Fraz茫o, J. M. Baptista, and J. L. Santos, “Recent advances in high-birefringence fiber loop mirror sensors,” Sensors, vol. 7, no. 11, pp. 2970–2983, 2007.
    52. W. E. Moerner, “New directions in single-molecule imaging and analysis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 31, pp. 12596–12602, 2007.
    53. W. G. Cox and V. L. Singer, “Fluorescent DNA hybridization probe preparation using amine modification and reactive dye coupling,” Biotechniques, vol. 36, no. 1, pp.114–122, 2004.
    54. E. A. James, K. Schmeltzer, and F. S. Ligler, “Detection of endotoxin using an evanescent wave fiber-optic biosensor,” Applied Biochemistry and Biotechnology, vol. 60, no. 3, pp. 189–202, 1996.
    55. Z. M. Hale, F. P. Payne, R. S. Marks, C. R. Lowe, C. R. Lowe, and M. M. Levine, “The single mode tapered optical fiber loop immunosensor,” Biosensors and Bioelectronics, vol. 11, no. 1–2, pp. 137–148, 1996.
    56. U. Narang, G. P. Anderson, F. S. Ligler, and J. Burans, “Fiber optic-based biosensor for ricin,” Biosensors and Bioelectronics, vol. 12, no. 9–10, pp. 937–945, 1997.
    57. S. Pilevar, C. C. Davis, and F. Portugal, “Tapered optical fiber sensor using near infrared fluorophores to assay hybridization,” Analytical Chemistry, vol. 70, no. 10, pp. 2031–2037, 1998.
    58. H. S. Haddock, P. M. Shankar, and R. Mutharasan, “Evanescent sensing of biomolecules and cells,” Sensors Actuators B: Chemical, vol. 88, no. 1, pp. 67–74, 2003.
    59. A. P. Ferreira, M. M. Werneck, and R. M. Ribeiro, “Development of an evanescent-field fiber optic sensor for Escherichia coli O157: H7,” Biosensors and Bioelectronics, vol. 16, no. 6, pp. 399–408, 2001.
    60. K. Rijal, A. Leung, P. M. Shankar, and R. Mutharasan, “Detection of vathoizen Escherichia coli O157: H7 AT 70 cells/mL using antibody-immobilized biconical tapered fiber sensors,” Biosensor and Bioelectronics, vol. 21, no. 6, pp. 871–880, 2005.
    61. D. Maraldo, P. M. Shankar, and R. Mutharasan, “Measuring bacterial growth by tapered fiber and changes in evanescent field,” Biosensors and Bioelectronics, vol. 21, no. 7, pp. 1339–1344, 2006.
    62. M. I. Zibaii, A. Kazemi, H. Latifi, M. Karimi Azar, S. M. Hosseini, and M. H. Ghezelaiagh, “Measuring bacterial growth by refractive index tapered fiber optic biosensor,” Photochemistry and Photobiology B: Biology, vol. 101, no. 3, pp. 313–320, 2010.
    63. H. Tazawa, T. Kanie, and M. Katayama, “Fiber-optic coupler based refractive index sensor and its application to biosensing,” Applied Physics Letters, vol. 91, no. 11, pp. 113901-1–113901-3, 2007.
    64. A. Leung, P. M. Shankar, and R. Mutharasan, “Real-time monitoring of bovine serum albumin at femtogram/mL levels on antibody immobilized tapered fibers,” Sensors Actuators B: Chemical, vol. 123, no. 2, pp. 888–895, 2007.
    65. J. M. Corres, I. R. Matias, J. Bravo, and F. J. Arregui, “Tapered optical fiber biosensor for the detection of anti-gliadin antibodies,” Sensors and Actuators B: Chemical, vol. 135, no. 1, pp. 166–171, 2008.
    66. M. I. Zibaii, H. Latifi, M. Arabsorkhi, A. Kazemi, M. Gholami, M. Karimi Azar, et al., “Biconical tapered optical fiber biosensor for real-time monitoring of bovine serum albumin at femtogram/mL levels on antibodyimmobilized tapered fibers,” in Proc. SPIE, vol. 7653, pp. 765322, 2010.
    67. A. Leung, P. M. Shankar, and R. Mutharasan, “Label-free detection of DNA hybridization using gold-coated tapered fiber optic biosensors (TFOBS) in a flow cell at 1310 nm and 1550 nm,” Sensors and Actuators B: Chemical, vol. 131, no. 2, pp. 640–645, 2008.
    68. M. I. Zibaii, Z. Taghipour, Z. Saeedian, H. Latifi, M. Gholami, and S. M. Hosseini, “Kinetic study for the hybridization of 25-mer DNA by nonadiabatic tapered optical fiber sensor,” in Proc. SPIE-OSA-IEEE, China, Nov. 13–16, vol. 8311, pp. 831109-1–831109-6, 2011.
  • 作者单位:1. Laser & Plasma Research Institute, Shahid Beheshti University, Evin, Tehran, Iran2. Department of Microbiology, Faculty of Biological Sciences, Shahid Beheshti University, Evin, Tehran, Iran3. INESC Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
  • ISSN:2190-7439
文摘
A brief review on biconical tapered fiber sensors for biosensing applications is presented. A variety of configurations and formats of this sensor have been devised for label free biosensing based on measuring small refractive index changes. The biconical nonadiabatic tapered optical fiber offers a number of favorable properties for optical sensing, which have been exploited in several biosensing applications, including cell, protein, and DNA sensors. The types of these sensors present a low-cost fiber biosensor featuring a miniature sensing probe, label-free direct detection, and high sensitivity.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700