PbS/CdS heterojunction quantum dot solar cells
详细信息    查看全文
  • 作者:Sawsan Dagher ; Yousef Haik ; Nacir Tit…
  • 刊名:Journal of Materials Science: Materials in Electronics
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:27
  • 期:4
  • 页码:3328-3340
  • 全文大小:2,928 KB
  • 参考文献:1.K. Tvrdy, P.V. Kamat, in Quantum Dot Solar Cells in Comprehensive Nanoscience and Technology, ed. by D.L. Andrews, G.D. Scholes, G.P. Wiederrecht (Academic Press, Oxford, 2011)
    2.D.V. Talapin, C.B. Murray, PbSe nanocrystal solids for n- and p-channel thin film field-effect transistors. Science 310(5745), 86–89 (2005)CrossRef
    3.A. Pandey, P. Guyot-Sionnest, Slow electron cooling in colloidal quantum dots. Science 322(5903), 929–932 (2008)CrossRef
    4.J.H. Bang, P.V. Kamat, Quantum dot sensitized solar cells. A tale of two semiconductor nanocrystals: CdSe and CdTe. ACS Nano 3(6), 1467–1476 (2009)CrossRef
    5.R.D. Schaller, V.I. Klimov, High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. Phys. Rev. Lett. 92(18), 186601 (2004)CrossRef
    6.V. Sukhovatkin, S. Hinds, L. Brzozowski, E.H. Sargent, Colloidal quantum-dot photodetectors exploiting multiexciton generation. Science 324(5934), 1542–1544 (2009)CrossRef
    7.R.J. Ellingson, M.C. Beard, J.C. Johnson, P. Yu, O.I. Micic, A.J. Nozik, A. Shabaev, A.L. Efros, Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. Nano Lett. 5(5), 865–871 (2005)CrossRef
    8.A. Smith, D. Dutton, Behavior of lead sulfide photocells in the ultraviolet. J. Opt. Soc. Am. 48(12), 1007–1009 (1958)CrossRef
    9.S.J. Kim, W.J. Kim, Y. Sahoo, A.N. Cartwright, P.N. Prasad, Multiple exciton generation and electrical extraction from a PbSe quantum dot photoconductor. Appl. Phys. Lett. 92(3), 31107 (2008)CrossRef
    10.S.J. Kim, W.J. Kim, A.N. Cartwright, P.N. Prasad, Carrier multiplication in a PbSe nanocrystal and P3HT/PCBM tandem cell. Appl. Phys. Lett. 92(19), 191107 (2008)CrossRef
    11.O.E. Semonin, J.M. Luther, S. Choi, H.Y. Chen, J. Gao, A.J. Nozik, M.C. Beard, Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell. Science 334, 1530–1533 (2011)CrossRef
    12.Q. Shen, K. Katayama, T. Toyoda, in Characterization of hot carrier cooling and multiple exciton generation dynamics in PbS QDs using an improved transient grating technique. J. Energy Chem. (2015, in press)
    13.R.J. Ellingson, M.C. Beard, J.C. Johnson, P. Yu, O.I. Micic, A.J. Nozik, A. Shabaev, A.L. Efros, Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. Nano Lett. 5(5), 865–887 (2005)CrossRef
    14.R.L. Sandberg, L.A. Padilha, M.M. Qazilbash, W.K. Bae, R.D. Schaller, J.M. Pietryga, M.J. Stevens, B. Baek, S.W. Nam, V.I. Klimov, Multiexciton dynamics in infrared-emitting colloidal nanostructures probed by a superconducting nanowire single photon detector. ACS Nano 6(11), 9532–9572 (2012)CrossRef
    15.P.D. Cunningham, J.E. Boercker, E.E. Foos, M.P. Lumb, A.R. Smith, J.G. Tischler, J.S. Melinger, Enhanced multiple exciton generation in quasi-one-dimensional semiconductors. Nano Lett. 11(8), 3476–3481 (2011)CrossRef
    16.S. Chandramohan, A. Kanjilal, T. Strache, J.K. Tripathi, S.N. Sarangi, R. Sathyamoorthy, T. Som, Modifications in structural and optical properties of Mn-ion implanted CdS thin films. Appl. Surf. Sci. 256(2), 465–468 (2009)CrossRef
    17.J. Britt, C. Ferekides, Thin-film CdS/CdTe solar cell with 15.8% efficiency. Appl. Phys. Lett. 62(22), 2851–2852 (1993)CrossRef
    18.X. Zong, H. Yang, G. Wu, G. Ma, F. Wen, L. Wang, C. Li, Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation. J. Am. Chem. Soc. 130(23), 7176–7177 (2008)CrossRef
    19.S. Zhong, L. Zhang, Z. Huang, S. Wang, Mixed-solvothermal synthesis of CdS micro/nanostructures and their optical properties. Appl. Surf. Sci. 257(7), 2599–2603 (2011)CrossRef
    20.Z.X. Yang, W. Zhong, P. Zhang, M.H. Xu, Y. Deng, C.T. Au, Y.W. Du, Controllable synthesis, characterization and photoluminescence properties of morphology-tunable CdS nanomaterials generated in thermal evaporation processes. Appl. Surf. Sci. 258(19), 7343–7347 (2012)CrossRef
    21.X. Liu, A facile route to preparation of sea-urchinlike cadmium sulfide nanorod-based materials. Mater. Chem. Phys. 91(1), 212–216 (2005)CrossRef
    22.H. Dang, V.P. Singh, S. Guduru, J.T. Hastings, Embedded nanowire window layers for enhanced quantum efficiency in window-absorber type solar cells like CdS/CdTe. Sol. Energy Mater. Sol. Cells 144, 641–651 (2016)CrossRef
    23.A.I. Oliva, R. Castro-Rodríguez, O. Solís-Canto, V. Sosaet, P. Quintana, J.L. Peña, Comparison of properties of CdS thin films grown by two techniques. Appl. Surf. Sci. 205(1–4), 56–64 (2003)CrossRef
    24.K. Ravichandran, P. Philominathan, Investigations on microstructural and optical properties of CdS films fabricated by a low-cost, simplified spray technique using perfume atomizer for solar cell applications. Sol. Energy 82(11), 1062–1066 (2008)CrossRef
    25.B. Li, Y. Wang, Facile synthesis and enhanced photocatalytic performance of flower-like ZnO hierarchical microstructures. J. Phys. Chem. C 114(2), 890–896 (2009)CrossRef
    26.C.X. Xu, X.W. Sun, B.J. Chen, P. Shum, S. Li, X. Hu, Nanostructural zinc oxide and its electrical and optical properties. J. Appl. Phys. 95(2), 661–666 (2004)CrossRef
    27.F.Q. He, Y.P. Zhao, Growth of ZnO nanotetrapods with hexagonal crown. Appl. Phys. Lett. 88(19), 193113 (2006)CrossRef
    28.R.I. Bickley, T. Gonzalez-Carreno, J.S. Lees, L. Palmisano, R. Tilley, A structural investigation of titanium dioxide photocatalysts. J. Solid State Chem. 92(1), 178–190 (1991)CrossRef
    29.A. Fujishima, T.N. Rao, D.A. Tryk, Titanium dioxide photocatalysis. J. Photochem. Photobiol. C 1(1), 1–21 (2000)CrossRef
    30.J.M. Wu, S. Hayakawa, K. Tsuru, A. Osaka, In vitro bioactivity of anatase film obtained by direct deposition from aqueous titanium tetrafluoride solutions. Thin Solid Films 414(2), 275–280 (2002)CrossRef
    31.J. Tang, L. Brzozowski, D.A. Barkhouse, X. Wang, R. Debnath, R. Wolowiec, E. Levina, A.G. Pattantyus-Abraham, D. Jamakosmanovic, E.H. Sargent, Quantum dot photovoltaics in the extreme quantum confinement regime: the surface-chemical origins of exceptional air-and light-stablity. ACS Nano 4(2), 869–878 (2010)CrossRef
    32.M. Singh, H.M. Haverinen, P. Dhagat, G.E. Jabbour, Inkjet printing-process and its applications. Adv. Mater. 22(6), 673–685 (2010)CrossRef
    33.H.M. Haverinen, R.A. Myllylä, G.E. Jabbour, Inkjet printed RGB quantum dot-hybrid LED. IEEE/OSA J. Disp. Technol. 6(3), 87–89 (2010)CrossRef
    34.G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, E.H. Sargent, Ultrasensitive solution-cast quantum dot photodetectors. Nature 442(7099), 180–183 (2006)CrossRef
    35.T. Jiang, K. Kemp, S. Hoogland, K. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K. Chou, A. Amassian, J. Asbury, E.H. Sargent, Colloidal-quantum dot photovoltaics using atomic-ligand passivation. Nat. Mater. 10(10), 765–771 (2011)CrossRef
    36.S.Y. Sung, S.Y. Kim, K.M. Jo, J.H. Lee, J.J. Kim, S.G. Kim, K.H. Chai, S.J. Pearton, D.P. Norton, Y.W. He, Fabrication of p-channel thin-film transistors using CuO active layers deposited at low temperature. Appl. Phys. Lett. 97(22), 222109 (2010)CrossRef
    37.J. Morales, L. Sánchez, F. Martín, J.R. Ramos-Barrado, M. Sánchez, Use of low-temperature nanostructured CuO thin films deposited by spray-pyrolysis in lithium cells. Thin Solid Films 474(1–2), 133–140 (2005)CrossRef
    38.A. Cruccolini, R. Narducci, R. Palombar, Gas adsorption effects on surface conductivity of nonstoichiometric CuO. Sens. Actuators B Chem. 98(2–3), 227–232 (2004)CrossRef
    39.J.C. Mallinson, The Foundations of Magnetic Recording (Academic Press, Berkeley, 1987)
    40.S. Komarneni, M.C. D’Arrigo, C. Leonelli, G.C. Pellacani, H. Katsuki, Microwave-hydrothermal synthesis of nanophase ferrites. J. Am. Ceram. Soc. 81(11), 3041–3043 (1998)CrossRef
    41.S. Komarneni, R.K. Rajha, H. Katsuki, Microwave-hydrothermal processing of titanium dioxide. Mater. Chem. Phys. 61(1), 50–54 (1999)CrossRef
    42.L.S. Cavalcante, J.C. Sczancoski, R.L. Tranquilin, J.A. Varela, E. Longo, M.O. Orlandi, Growth mechanism of octahedron-like BaMoO4 microcrystals processed in microwave-hydrothermal: experimental observations and computational modeling. Particuology 7(5), 353–362 (2009)CrossRef
    43.K. Borgohain, J.B. Singh, M.V. Rama Rao, T. Shribathi, S. Mahamuni, Quantum size effects in CuO nanoparticles. Phys. Rev. B 61(16), 11093–11096 (2000)CrossRef
    44.M. Sahooli, S. Sabbagi, R. Saboori, Synthesis and characterization of mono sized CuO nanoparticles. Mater. Lett. 81, 169–172 (2012)CrossRef
    45.D.I. Son, C.H. You, T.W. Kim, Structural, optical, and electronic properties of colloidal CuO nanoparticles formed by using a colloid-thermal synthesis process. Appl. Surf. Sci. 255(21), 8794–8797 (2009)CrossRef
    46.S.Y. Sung, S.Y. Kim, K.M. Jo, J.H. Lee, J.J. Kim, S.G. Kim, K.H. Chai, S.J. Pearton, D.P. Norton, Y.W. He, Fabrication of p-channel thin-film transistors using CuO active layers deposited at low temperature. Appl. Phys. Lett. 97(22), 222109 (2010)CrossRef
    47.B. Gonfa, H. Zhao, J. Li, J. Qiu, M. Saidani, S. Zhang, R. Izquierdo, N. Wu, A. Khakani, D. Ma, Air-processed depleted bulk heterojunction solar cells based on PbS/CdS core–shell quantum dots and TiO2 nanorod arrays. Sol. Energy Mater. Sol. Cells 124, 67–74 (2014)CrossRef
    48.Y. Chen, Q. Tao, W. Fu, H. Yang, Synthesis of PbS/Ni2+ doped CdS quantum dots cosensitized solar cells: enhanced power conversion efficiency and durability. Electrochim. Acta 173, 812–818 (2015)CrossRef
    49.A.K. Rath, M. Bernechea, L. Martinez, G. Konstantatos, Solution-processed heterojunction solar cells based on p-type PbS quantum dots and n-type Bi2S3 nanocrystals. Adv. Mater. 23(32), 3712–3717 (2011)CrossRef
    50.J. Chang, T. Oshima, S. Hachiya, K. Sato, T. Toyoda, K. Katayama, S. Hayase, Q. Shen, Uncovering the charge transfer and recombination mechanism in ZnS-coated PbS quantum dot sensitized solar cells. Sol. Energy 122, 307–313 (2015)CrossRef
    51.X. Yao, Y. Chang, G. Li, L. Mi, S. Liu, H. Wang, Y. Yu, Y. Jiang, Inverted quantum-dot solar cells with depleted heterojunction structure employing CdS as the electron acceptor. Sol. Energy Mater. Sol. Cells 137, 287–292 (2015)CrossRef
    52.Y. Tu, J. Wu, Z. Lan, Y. Lin, Q. Liu, B. Lin, G. Liu, Bifacial illuminated PbS quantum dot-sensitized solar cells with translucent CuS counter electrodes. J. Mater. Sci. Mater. Electron. 25(7), 3016–3022 (2014)CrossRef
    53.J. Tang, H. Liu, D. Zhitomirsky, S. Hoogland, X. Wang, M. Furukawa, L. Levina, E.H. Sargent, Quantum junction solar cells. Nano Lett. 12(9), 4889–4894 (2012)CrossRef
    54.I.J. Kramer, L. Levina, R. Debnath, D. Zhitomirsky, E.H. Sargent, Solar cells using quantum funnels. Nano Lett. 11(9), 3701–3706 (2011)CrossRef
    55.S. Dagher, A.I. Ayesh, N. Tit, Y. Haik, Influence of reactant concentration on optical properties of ZnO nanoparticles. Mater. Technol. Adv. Perform. Mater. 29(2), 76–82 (2014)
    56.L.Y. Chang, R. Lunt, P. Brown, V. Bulović, M. Bawendi, Low-temperature solution-processed solar cells based on PbS colloidal quantum dot/CdS heterojunctions. Nano Lett. 13(3), 994–999 (2013)CrossRef
    57.S. Dagher, Y. Haik, N. Tit, A. Ayesh, in Heterojunction Solar Cell Based on p-type PbS Quantum Dots and Two n-type Nanocrystals CdS and ZnO, International Conference of Renewable Energy: Generation and Applications (ICREGA14), Springer International Publishing Switzerland, ISBN:2014978-3-319-05707-1, ID:322751-1-En, Chapter: 43, 15 May 2014
    58.S. Dagher, Y. Haik, A.I. Ayesh, N. Tit, Synthesis and optical properties of colloidal CuO nanoparticles. J. Lumin. 151, 149–154 (2014)CrossRef
    59.K. Szendrei, W. Gomulya, M. Yarema, W. Heiss, M.A. Loi, PbS nanocrystal solar cells with high efficiency and fill factor. Appl. Phys. Lett. 97(20), 203501 (2010)CrossRef
    60.C. Ratanatawanate, C.R. Xiong, K.J. Balkus, Fabrication of PbS quantum dot doped TiO2 nanotubes. ACS Nano 2(8), 1682–1688 (2008)CrossRef
    61.N. Zhao, L. Qi, Low-temperature synthesis of star-shaped PbS nanocrystals in aqueous solutions of mixed cationic/anionic surfactants. Adv. Mater. 18(3), 359–362 (2006)CrossRef
    62.I.H.J. Arellano, J. Mangadlao, I.B. Ramiro, K.F. Suazo, 3-Component low temperature solvothermal synthesis of colloidal cadmium sulfide quantum dots. Mater. Lett. 64(6), 785–788 (2010)CrossRef
  • 作者单位:Sawsan Dagher (1)
    Yousef Haik (2)
    Nacir Tit (3)
    Ahmad Ayesh (4)

    1. Department of Material Science and Engineering, UAE University, P.O. Box 15551, Al Ain, United Arab Emirates
    2. Department of Mechanical Engineering, UAE University, P. O. Box 15551, Al Ain, United Arab Emirates
    3. Department of Physics, UAE University, P.O. Box 15551, Al Ain, United Arab Emirates
    4. Department of Mathematics, Statistics and Physics, Qatar University, P.O. Box 2713, Doha, Qatar
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Optical and Electronic Materials
    Characterization and Evaluation Materials
  • 出版者:Springer New York
  • ISSN:1573-482X
文摘
The present work investigates the effects of combination of lead sulfide PbS quantum dots and cadmium sulfide CdS nanoparticles (NPs), with n-type and p-type semiconductors, on the photovoltaic performance of heterojunction solar cells. Namely, p-type semiconductors are: poly[3,4-ethylenedioxythiophene]–poly[styrenesulfonate] (PEDOT:PSS), copper oxide (CuO) NPs and graphene oxide (GO); while n-type semiconductors are: zinc oxide (ZnO) NPs and titanium dioxide (TiO2) NPs. The above were used to fabricate heterojunction solar cell structures via spin coating, chemical bath deposition and SILAR cycle methods. The morphology and energy band diagram for each solar cell were examined. The photovoltaic performance of the cells was measured under 1 sun illumination (irradiation of 100 mW/cm2). This efficiency ranged between 0.388 and 5.04 %. The solar cell with FTO/ZnO/TiO2/CdS/PbS/PEDOT:PSS/Au structure and optimum layers’ thickness exhibited a short-circuit current of 24.2 mA/cm2, open circuit voltage of 544 mV, a fill factor of 38.2 % and a power conversion efficiency of 5.04 % with reliably good stability. This is related to the uniform surface morphology throughout every cell layer without voids, pinholes or cracks. Furthermore, gradual band energy levels alignment of n-type and p-type NPs (CdS/PbS), as well as high hole mobility of PEDOT:PSS and the high electron affinity of ZnO and TiO2 are other major factors that controls quantum efficiency.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700