Towards active plasmonic response devices
详细信息    查看全文
  • 作者:Yinghui Sun (1) (3)
    Lin Jiang (2)
    Liubiao Zhong (2)
    Yueyue Jiang (3)
    Xiaodong Chen (3)

    1. College of Physics
    ; Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology ; Soochow University ; Suzhou ; 215006 ; China
    3. School of Materials Science and Engineering
    ; Nanyang Technological University ; 50 Nanyang Avenue ; Singapore ; 639798 ; Singapore
    2. Institute of Functional Nano & Soft Materials (FUNSOM)
    ; Soochow University ; Suzhou ; Jiangsu ; 215123 ; China
  • 关键词:active plasmonic device ; metallic nanostructure ; plasmonic response ; external control ; switches
  • 刊名:Nano Research
  • 出版年:2015
  • 出版时间:February 2015
  • 年:2015
  • 卷:8
  • 期:2
  • 页码:406-417
  • 全文大小:2,963 KB
  • 参考文献:1. Brongersma, M. L.; Shalaev, V. M. The case for plasmonics. / Science 2010, / 328, 440鈥?41. CrossRef
    2. Zia, R.; Schuller, J. A.; Chandran, A.; Brongersma, M. L. Plasmonics: The next chip-scale technology. / Mater. Today 2006, / 9, 20鈥?7. CrossRef
    3. Ozbay, E. Plasmonics: Merging photonics and electronics at nanoscale dimensions. / Science 2006, / 311, 189鈥?93. CrossRef
    4. Odom, T. W.; Schatz, G. C. Introduction to plasmonics. / Chem. Rev. 2011, / 111, 3667鈥?668. CrossRef
    5. Jiang, L.; Zhang, H. X.; Zhuang, J. Q.; Yang, B. Q.; Yang, W. S.; Li, T. J.; Sun, C. C. Sterically mediated two-dimensional architectures in aggregates of Au nanoparticles directed by phosphorothioate oligonucleotide-DNA. / Adv. Mater. 2005, / 17, 2066鈥?070. CrossRef
    6. Lacroix, J. C.; Martin, P.; Randriamahazaka, H. Active Nanoantenna System. In / Encyclopedia of Nanotechnology. Bhushan, B., Ed.; Springer: Berlin, 2012; pp 56鈥?9.
    7. Haes, A. J.; Haynes, C. L.; McFarland, A. D.; Schatz, G. C.; Van Duyne, R. R.; Zou, S. L. Plasmonic materials for surface-enhanced sensing and spectroscopy. / MRS Bull 2005, / 30, 368鈥?75. CrossRef
    8. Mayer, K. M.; Hafner, J. H. Localized surface plasmon resonance sensors. / Chem. Rev. 2011, / 111, 3828鈥?857. CrossRef
    9. Stewart, M. E.; Anderton, C. R.; Thompson, L. B.; Maria, J.; Gray, S. K.; Rogers, J. A.; Nuzzo, R. G. Nanostructured plasmonic sensors. / Chem. Rev. 2008, / 108, 494鈥?21. CrossRef
    10. Liu, Y.; Yin, J.-J.; Nie, Z. Harnessing the collective properties of nanoparticle ensembles for cancer theranostics. / Nano Res. 2014, / 7, 1719鈥?730. CrossRef
    11. Jiang, L.; Zou, C. J.; Zhang, D. H.; Sun, Y. H.; Jiang, Y. Y.; Leow, W. R.; Liedberg, B.; Li, S. Z.; Chen, X. D. Synergistic modulation of surface interaction to assemble metal nanoparticles into two-dimensional arrays with tunable plasmonic properties. / Small 2013, / 10, 609鈥?14. CrossRef
    12. Li, L.; Steiner, U.; Mahajan, S. Single Nanoparticle SERS probes of ion intercalation in metal-oxide electrodes. / Nano Lett. 2014, / 14, 495鈥?98. CrossRef
    13. Wu, H.; Wang, P.; He, H.; Jin, Y. Controlled synthesis of porous Ag/Au bimetallic hollow nanoshells with tunable plasmonic and catalytic properties. / Nano Res. 2012, / 5, 135鈥?44. CrossRef
    14. Zhu, K.; Wang, D.; Liu, J. Self-assembled materials for catalysis. / Nano Res. 2009, / 2, 1鈥?9. CrossRef
    15. Atwater, H. A.; Polman, A. Plasmonics for improved photovoltaic devices. / Nat. Mater. 2010, / 9, 865鈥?65. CrossRef
    16. Atwater, H. A.; Polman, A. Plasmonics for improved photovoltaic devices. / Nat. Mater. 2010, / 9, 205鈥?13. CrossRef
    17. Hutter, E.; Fendler, J. H. Exploitation of localized surface plasmon resonance. / Adv. Mater. 2004, / 16, 1685鈥?706. CrossRef
    18. Berthelot, J.; Bouhelier, A.; Huang, C.; Margueritat, J.; Colas-des-Francs, G.; Finot, E.; Weeber, J. C.; Dereux, A.; Kostcheev, S.; Ahrach, H. I. E.; et al. Tuning of an optical dimer nanoantenna by electrically controlling its load impedance. / Nano Lett. 2009, / 9, 3914鈥?921. CrossRef
    19. Liu, N.; Wen, F.; Zhao, Y.; Wang, Y.; Nordlander, P.; Halas, N. J.; Al霉, A. Individual nanoantennas loaded with three-dimensional optical nanocircuits. / Nano Lett. 2012, / 13, 142鈥?47. CrossRef
    20. Xie, F.; Pang, J.; Centeno, A.; Ryan, M.; Riley, D. J.; Alford, N. Nanoscale control of Ag nanostructures for plasmonic fluorescence enhancement of near-infrared dyes. / Nano Res. 2013, / 6, 496鈥?10. CrossRef
    21. Som, T.; Karmakar, B. Core-shell Au-Ag nanoparticles in dielectric nanocomposites with plasmon-enhanced fluorescence: A new paradigm in antimony glasses. / Nano Res. 2009, / 2, 607鈥?16. CrossRef
    22. Zheng, Y. B.; Kiraly, B.; Cheunkar, S.; Huang, T. J.; Weiss, P. S. Incident-angle-modulated molecular plasmonic switches: A case of weak exciton-plasmon coupling. / Nano. Lett. 2011, / 11, 2061鈥?065. CrossRef
    23. Zheng, Y. B.; Yang, Y. W.; Jensen, L.; Fang, L.; Juluri, B. K.; Flood, A. H.; Weiss, P. S.; Stoddart, J. F.; Huang, T. J. Active molecular plasmonics: Controlling plasmon resonances with molecular switches. / Nano Lett. 2009, / 9, 819鈥?25. CrossRef
    24. Pacifici, D.; Lezec, H. J.; Atwater, H. A. All-optical modulation by plasmonic excitation of CdSe quantum dots. / Nat. Photonics 2007, / 1, 402鈥?06. CrossRef
    25. Leroux, Y.; Lacroix, J. C.; Fave, C.; Stockhausen, V.; F茅lidj, N.; Grand, J.; Hohenau, A.; Krenn, J. R. Active plasmonic devices with anisotropic optical response: A step toward active polarizer. / Nano Lett. 2009, / 9, 2144鈥?148. CrossRef
    26. Khatua, S.; Chang, W. S.; Swanglap, P.; Olson, J.; Link, S. Active modulation of nanorod plasmons. / Nano Lett. 2011, / 11, 3797鈥?802. CrossRef
    27. Jiang, L.; Sun, Y. H.; Huo, F. W.; Zhang, H.; Qin, L. D.; Li, S. Z.; Chen, X. D. Free-standing one-dimensional plasmonic nanostructures. / Nanoscale 2012, / 4, 66鈥?5. CrossRef
    28. Jiang, L.; Sun, Y.; Nowak, C.; Kibrom, A.; Zou, C.; Ma, J.; Fuchs, H.; Li, S.; Chi, L.; Chen, X. Patterning of plasmonic nanoparticles into multiplexed one-dimensional arrays based on spatially modulated electrostatic potential. / ACS Nano 2011, / 5, 8288鈥?294. CrossRef
    29. Hafner, J. H.; Nordlander, P.; Weiss, P. S. Virtual issue on plasmonics. / ACS Nano 2011, / 5, 4245鈥?248. CrossRef
    30. Halas, N. J. Plasmonics: An emerging field fostered by nano letters. / Nano Lett. 2010, / 10, 3816鈥?822. CrossRef
    31. Halas, N. J.; Lal, S.; Chang, W. S.; Link, S.; Nordlander, P. Plasmons in strongly coupled metallic nanostructures. / Chem. Rev. 2011, / 111, 3913鈥?961. CrossRef
    32. Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. The Optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. / J. Phys. Chem. B 2003, / 107, 668鈥?77. CrossRef
    33. Noguez, C. Surface plasmons on metal nanoparticles: The influence of shape and physical environment. / J. Phys. Chem. C 2007, / 111, 3806鈥?819. CrossRef
    34. Moores, A.; Goettmann, F. The plasmon band in noble metal nanoparticles: An introduction to theory and applications. / New J. Chem. 2006, / 30, 1121鈥?132. CrossRef
    35. Lee, K. S.; El-Sayed, M. A. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. / J. Phys. Chem. B 2006, / 110, 19220鈥?9225. CrossRef
    36. Link, S.; El-Sayed, M. A. Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. / Int. Rev. Phys. Chem. 2000, / 19, 409鈥?53. CrossRef
    37. Chen, H.; Shao, L.; Li, Q.; Wang, J. Gold nanorods and their plasmonic properties. / Chem. Soc. Rev. 2013, / 42, 2679鈥?724. CrossRef
    38. Zhu, X.; Shi, L.; Liu, X.; Zi, J.; Wang, Z. A mechanically tunable plasmonic structure composed of a monolayer array of metal-capped colloidal spheres on an elastomeric substrate. / Nano Res. 2010, / 3, 807鈥?12. CrossRef
    39. Jiang, L.; Tang, Y. X.; Liow, C. H.; Wu, J. S.; Sun, Y. H.; Jiang, Y. Y.; Dong, Z. L.; Li, S. Z.; Dravid, V. P.; Chen, X. D. Synthesis of fivefold stellate polyhedral gold nanoparticles with {110}-facets via a seed-mediated growth method. / Small 2013, / 9, 705鈥?10. CrossRef
    40. Jiang, L.; Wang, W. C.; Fuchs, H.; Chi, L. F. One-dimensional arrangement of gold nanoparticles with tunable interparticle distance. / Small 2009, / 5, 2819鈥?822. CrossRef
    41. Xu, G.; Tazawa, M.; Jin, P.; Nakao, S.; Yoshimura, K. Wavelength tuning of surface plasmon resonance using dielectric layers on silver island films. / Appl. Phys. Lett. 2003, / 82, 3811鈥?813. CrossRef
    42. Erdem, T.; Soran-Erdem, Z.; Hernandez-Martinez, P.; Sharma, V.; Akcali, H.; Akcali, I.; Gaponik, N.; Eychm眉ller, A.; Demir, H. Sweet plasmonics: Sucrose macrocrystals of metal nanoparticles. / Nano Res. 2014, in press, DOI: 10.1007/s12274-014-0568-y.
    43. Si, G.; Zhao, Y.; Leong, E. S. P.; Liu, Y. J. Liquid-crystal-enabled active plasmonics: A review. / Materials 2014, / 7, 1296鈥?317. CrossRef
    44. Tokarev, I.; Minko, S. Tunable plasmonic nanostructures from noble metal nanoparticles and stimuli-responsive polymers. / Soft Matter 2012, / 8, 5980鈥?987. CrossRef
    45. Suh, J. Y.; Donev, E. U.; Lopez, R.; Feldman, L. C.; Haglund, R. F. Modulated optical transmission of subwavelength hole arrays in metal-VO2 films. / Appl. Phys. Lett. 2006, / 88, 133115. CrossRef
    46. Dintinger, J.; Klein, S.; Ebbesen, T. W. Molecule-surface plasmon interactions in hole arrays: Enhanced absorption, refractive index changes, and all-optical switching. / Adv. Mater. 2006, / 18, 1267鈥?270. CrossRef
    47. Chu, K. C.; Chao, C. Y.; Chen, Y. F.; Wu, Y. C.; Chen, C. C. Electrically controlled surface plasmon resonance frequency of gold nanorods. / Appl. Phys. Lett. 2006, / 89, 103107. CrossRef
    48. Chen, C. T.; Liu, C. C.; Wang, C. H.; Chen, C. W.; Chen, Y. F. Tunable coupling between exciton and surface plasmon in liquid crystal devices consisting of Au nanoparticles and CdSe quantum dots. / Appl. Phys. Lett. 2011, / 98, 261918. CrossRef
    49. Kossyrev, P. A.; Yin, A.; Cloutier, S. G.; Cardimona, D. A.; Huang, D.; Alsing, P. M.; Xu, J. M. Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix. / Nano Lett. 2005, / 5, 1978鈥?981. CrossRef
    50. Dickson, W.; Wurtz, G. A.; Evans, P. R.; Pollard, R. J.; Zayats, A. V. Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal. / Nano Lett. 2008, / 8, 281鈥?86. CrossRef
    51. Jun, Y. C. Electrically-driven active plasmonic devices. In / Plasmonics-Principles and Applications. Kim, K. Y., Ed.; InTech: Croatia, 2012; pp 385鈥?00.
    52. De Sio, L.; Klein, G.; Serak, S.; Tabiryan, N.; Cunningham, A.; Tone, C. M.; Ciuchi, F.; Burgi, T.; Umeton, C.; Bunning, T. All-optical control of localized plasmonic resonance realized by photoalignment of liquid crystals. / J. Mate. Chem. C 2013, / 1, 7483鈥?487. CrossRef
    53. Liu, Q.; Tang, J.; Zhang, Y.; Martinez, A.; Wang, S.; He, S.; White, T. J.; Smalyukh, I. I. Shape-dependent dispersion and alignment of nonaggregating plasmonic gold nanoparticles in lyotropic and thermotropic liquid crystals. / Phys. Rev. E 2014, / 89, 052505. CrossRef
    54. De Sio, L.; Placido, T.; Serak, S.; Comparelli, R.; Tamborra, M.; Tabiryan, N.; Curri, M. L.; Bartolino, R.; Umeton, C.; Bunning, T. Nano-localized heating source for photonics and plasmonics. / Adv. Opt. Mater. 2013, / 1, 899鈥?04. CrossRef
    55. Olson, J.; Swanglap, P.; Chang, W. S.; Khatua, S.; Solis, D.; Link, S. Detailed mechanism for the orthogonal polarization switching of gold nanorod plasmons. / Phys. Chem. Chem. Phys. 2013, / 15, 4195鈥?204. CrossRef
    56. Hsiao, V. K. S.; Zheng, Y. B.; Juluri, B. K.; Huang, T. J. Light-driven plasmonic switches based on Au nanodisk arrays and photoresponsive liquid crystals. / Adv. Mater. 2008, / 20, 3528鈥?532. CrossRef
    57. Liu, Y. J.; Si, G. Y.; Leong, E. S. P.; Xiang, N.; Danner, A. J.; Teng, J. H. Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays. / Adv. Mater. 2012, / 24, OP131鈥揙P135.
    58. Querejeta-Fern谩ndez, A.; Chauve, G.; Methot, M.; Bouchard, J.; Kumacheva, E. Chiral plasmonic films formed by gold nanorods and cellulose nanocrystals. / J. Am. Chem. Soc. 2014, / 136, 4788鈥?793. CrossRef
    59. Jiang, L.; Wang, X.; Chi, L. Nanoscaled surface patterning of conducting polymers. / Small 2011, / 7, 1309鈥?321. CrossRef
    60. Baba, A.; Tada, K.; Janmanee, R.; Sriwichai, S.; Shinbo, K.; Kato, K.; Kaneko, F.; Phanichphant, S. Controlling surface plasmon optical transmission with an electrochemical switch using conducting polymer thin films. / Adv. Funct. Mater. 2012, / 22, 4383鈥?388. CrossRef
    61. Leroux, Y. R.; Lacroix, J. C.; Chane-Ching, K. I.; Fave, C.; F茅lidj, N.; L茅vi, G.; Aubard, J.; Krenn, J. R.; Hohenau, A. Conducting polymer electrochemical switching as an easy means for designing active plasmonic devices. / J. Am. Chem. Soc. 2005, / 127, 16022鈥?6023. CrossRef
    62. Stockhausen, V.; Martin, P.; Ghilane, J.; Leroux, Y.; Randriamahazaka, H.; Grand, J.; Felidj, N.; Lacroix, J. C. Giant plasmon resonance shift using poly(3,4-ethylenedioxythiophene) electrochemical switching. / J. Am. Chem. Soc. 2010, / 132, 10224鈥?0226. CrossRef
    63. Leroux, Y.; Lacroix, J. C.; Fave, C.; Trippe, G.; F茅lidj, N.; Aubard, J.; Hohenau, A.; Krenn, J. R. Tunable electrochemical switch of the optical properties of metallic nanoparticles. / ACS Nano 2008, / 2, 728鈥?32. CrossRef
    64. Jiang, N.; Shao, L.; Wang, J. (Gold nanorod core)/(polyaniline shell) plasmonic switches with large plasmon shifts and modulation depths. / Adv. Mater. 2014, / 26, 3282鈥?289. CrossRef
    65. Gehan, H. l. n.; Mangeney, C.; Aubard, J.; L茅vi, G.; Hohenau, A.; Krenn, J. R.; Lacaze, E.; F茅lidj, N. Design and optical properties of active polymer-coated plasmonic nanostructures. / J. Phys. Chem. Lett. 2011, / 2, 926鈥?31. CrossRef
    66. Han, X.; Liu, Y.; Yin, Y. Colorimetric stress memory sensor based on disassembly of gold nanoparticle chains. / Nano Lett. 2014, / 14, 2466鈥?470. CrossRef
    67. Chen, H.; Kou, X.; Yang, Z.; Ni, W.; Wang, J. Shape-and size-dependent refractive index sensitivity of gold nanoparticles. / Langmuir 2008, / 24, 5233鈥?237. CrossRef
    68. Anker, J. N.; Hall, W. P.; Lyandres, O.; Shah, N. C.; Zhao, J.; Van Duyne, R. P. Biosensing with plasmonic nanosensors. / Nat. Mater. 2008, / 7, 442鈥?53. CrossRef
    69. Ringler, M.; Schwemer, A.; Wunderlich, M.; Nichtl, A.; K眉rzinger, K.; Klar, T. A.; Feldmann, J. shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators. / Phys. Rev. Lett. 2008, / 100, 203002. CrossRef
    70. Wurtz, G. A.; Evans, P. R.; Hendren, W.; Atkinson, R.; Dickson, W.; Pollard, R. J.; Zayats, A. V.; Harrison, W.; Bower, C. Molecular plasmonics with tunable excitonplasmon coupling strength in J-aggregate hybridized Au nanorod assemblies. / Nano Lett. 2007, / 7, 1297鈥?303. CrossRef
    71. Ming, T.; Zhao, L.; Xiao, M.; Wang, J. Resonance-coupling-based plasmonic switches. / Small 2010, / 6, 2514鈥?519. CrossRef
    72. Haes, A. J.; Zou, S.; Zhao, J.; Schatz, G. C.; Van Duyne, R. P. Localized surface plasmon resonance spectroscopy near molecular resonances. / J. Am. Chem. Soc. 2006, / 128, 10905鈥?0914. CrossRef
    73. Zhao, J.; Das, A.; Zhang, X.; Schatz, G. C.; Sligar, S. G.; Van Duyne, R. P. Resonance surface plasmon spectroscopy: Low molecular weight substrate binding to cytochrome P450. / J. Am. Chem. Soc. 2006, / 128, 11004鈥?1005. CrossRef
    74. Zhao, J.; Jensen, L.; Sung, J.; Zou, S.; Schatz, G. C.; Van Duyne, R. P. Interaction of plasmon and molecular resonances for rhodamine 6G adsorbed on silver nanoparticles. / J. Am. Chem. Soc. 2007, / 129, 7647鈥?656. CrossRef
    75. Schlather, A. E.; Large, N.; Urban, A. S.; Nordlander, P.; Halas, N. J. Near-field mediated plexcitonic coupling and giant rabi splitting in individual metallic dimers. / Nano Lett. 2013, / 13, 3281鈥?286. CrossRef
    76. Morin, F. J. Oxides which show a metal-to-insulator transition at the neel temperature. / Phys. Rev. Lett. 1959, / 3, 34鈥?6. CrossRef
    77. Driscoll, T.; Palit, S.; Qazilbash, M. M.; Brehm, M.; Keilmann, F.; Chae, B.-G.; Yun, S.-J.; Kim, H.-T.; Cho, S. Y.; Jokerst, N. M.; et al. Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide. / Appl. Phys. Lett. 2008, / 93, 024101. CrossRef
    78. Donev, E. U.; Suh, J. Y.; Villegas, F.; Lopez, R.; Haglund, R. F.; Feldman, L. C. Optical properties of subwavelength hole arrays in vanadium dioxide thin films. / Phys. Rev. B 2006, / 73, 201401. CrossRef
    79. Dicken, M. J.; Aydin, K.; Pryce, I. M.; Sweatlock, L. A.; Boyd, E. M.; Walavalkar, S.; Ma, J.; Atwater, H. A. Frequency tunable near-infrared metamaterials based on VO2 phase transition. / Opt. Express 2009, / 17, 18330鈥?8339. CrossRef
    80. Suh, J. Y.; Lopez, R.; Feldman, L. C.; Haglund, R. F. Semiconductor to metal phase transition in the nucleation and growth of VO2 nanoparticles and thin films. / J. Appl. Phys. 2004, / 96, 1209鈥?213. CrossRef
    81. Wei, J.; Wang, Z.; Chen, W.; Cobden, D. H. New aspects of the metal-insulator transition in single-domain vanadium dioxide nanobeams. / Nat. Nanotechnol. 2009, / 4, 420鈥?24. CrossRef
    82. Ferrara, D. W.; Nag, J.; MacQuarrie, E. R.; Kaye, A. B.; Haglund, R. F. Plasmonic probe of the semiconductor to metal phase transition in vanadium dioxide. / Nano Lett. 2013, / 13, 4169鈥?175. CrossRef
    83. Zhou, H.; Cao, X.; Jiang, M.; Bao, S.; Jin, P. Surface plasmon resonance tunability in VO2/Au/VO2 thermochromic structure. / Laser Photonics Rev. 2014, / 8, 617鈥?25. CrossRef
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chinese Library of Science
    Chemistry
    Nanotechnology
  • 出版者:Tsinghua University Press, co-published with Springer-Verlag GmbH
  • ISSN:1998-0000
文摘
Given the interdisciplinary challenges in materials sciences, chemistry, physics, and biology, as well as the demands to merge electronics and photonics at the nanometer scale for miniaturized integrated circuits, plasmonics serves as a bridge by breaking the limit in the speed of nanoscale electronics and the size of terahertz dielectric photonics. Active plasmonic systems enabling active control over the plasmonic properties in real time have opened up a wealth of potential applications. This review focuses on the development of active plasmonic response devices. Significant advances have been achieved in control over the dielectric properties of the active surrounding medium, including liquid crystals, polymers, photochromic molecules and inorganic materials, which in turn allows tuning of the reversible plasmon resonance switch of neighboring metal nanostructures.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700