Electrospun nanowire arrays for electronics and optoelectronics
详细信息    查看全文
  • 作者:Zhi Zheng 郑志 ; Lin Gan 甘霖 ; Tianyou Zhai 翟天仿/a>
  • 关键词:electrospinning ; aligned nanowire array ; electronics ; optoelectronics
  • 刊名:Science China Materials
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:59
  • 期:3
  • 页码:200-216
  • 全文大小:4,150 KB
  • 参考文献:1.Zhai T, Yao J. One-Dimensional Nanostructures: Principles and Applications. New Jersy: John Wiley & Sons Hoboken, 2013
    2.Zhai TY, Li L, Wang X, et al. Recent developments in one-dimensional inorganic nanostructures for photodetectors. Adv Funct Mater, 2010, 20: 4233–4248CrossRef
    3.Xia YN, Yang PD, Sun YG, et al. One-dimensional nanostru cture: synthesis, characterization, and applications. Adv Mater, 2003, 15: 353–389CrossRef
    4.Liu JW, Liang HW, Yu SH. Macroscopic-scale assembled nanowire thin films and their functionalities. Chem Rev, 2012, 112: 4770–4799CrossRef
    5.Greiner A, Wendorff JH. Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew Chem Int Ed, 2007, 46: 5670–5703CrossRef
    6.Li D, Xia YN. Electrospinning of nanofibers: reinventing the wheel? Adv Mater, 2004, 16: 1151–1170
    7.Zhou SS, Chen JN, Gan L, et al. Scalcable production of self-supported WS2/C nanofibers by electrospinning as the anode for high performance lithium-ion batteries. Sci Bull, 2016, 61: 227–235CrossRef
    8.Elnathan R, Kwiat M, Patolsky F, Voelcker NH. Engineering vertically aligned semiconductor nanowire arrays for applications in the life sciences. Nano Today, 2014, 9: 172–196CrossRef
    9.Li Y, Duan GT, Liu GQ, Cai WP. Physical processes-aided periodic micro/nanostructured arrays by colloidal template technique: fabrication and applications. Chem Soc Rev, 2013, 42: 3614–3627CrossRef
    10.Huang ZP, Geyer N, Werner P, Boor JD, Gösele U. Metal-assisted chemical etching of silicon: a review. Adv Mater, 2011, 23: 285–308CrossRef
    11.Yu GH, Cao A, Lieber CM. Large-area blown bubble films of aligned NWs and carbon nanotubes. Nat Nanotechnol, 2007, 2: 372–377CrossRef
    12.Li D, Wang YL, Xia YN. Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays. Nano Lett, 2003, 3: 1167–1171CrossRef
    13.Pan ZW, Dai ZR, Wang ZL. Nanobelts of semiconducting oxides. Science, 291: 1947-1949
    14.Gudiksen MS, Lauhon LJ, Wang JF, Smith DC, Lieber CM. Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature, 2002, 415: 617–620CrossRef
    15.Lee HW, Muralidharan P, Ruffo R, et al. Ultrathin spinel LiMn2O4 NWs as high power cathode materials for Li-ion batteries. Nano Lett, 2010, 10: 3852–3856CrossRef
    16.Limmer SJ, Cao G. Sol-gel electrophoretic deposition for the growth of oxide nanorods. Adv Mater, 2003, 15: 427–431CrossRef
    17.Li ZY, Zhang HN, Zheng W. Highly sensitive and stable humidity nanosensors based on LiCl doped TiO2 electrospun nanofibers. J Am Chem Soc, 2008, 130: 5036–5037CrossRef
    18.Long YZ, Yu M, Sun B, Gu CZ, Fan ZY. Recent advances in largescale assembly of semiconducting inorganic NWs and nanofibers for electronics, sensors and photovoltaics. Chem Soc Rev, 2012, 41: 4560–4580CrossRef
    19.Yang PD. Wires on water. Nature, 2003, 425: 243–244CrossRef
    20.Whang D, Jin S, Wu Y, Lieber CM. Large-scale hierarchical organization of nanowire arrays for integrated nanosystems. Nano Lett, 2003, 3: 1255–1259CrossRef
    21.Liu JW, Wang JL, Huang WR, et al. Ordering Ag nanowire arrays by a glass capillary: a portable, reusable and durable SERS substrate. Sci Rep, 2012, 2: 987
    22.Wang DW, Chang YL, Liu Z, Dai HJ. Oxidation resistant germanium NWs: bulk synthesis, long chain alkanethiol functionalization, and Langmuir-Blodgett assembly. J Am Chem Soc, 2005, 127: 11871–11875CrossRef
    23.Kim YK, Kim DI, Park J. Facile transfer of thickness controllable poly(methyl methacrylate) patterns on a nanometer scale onto SiO2 substrates via microcontact printing combined with simplified langmuir-schaefer technique. Langmuir, 2008, 24: 14289–14295CrossRef
    24.Acharya S, Panda AB, Belman N, Efrima S, Golan Y. A semiconductor-nanowire assembly of ultrahigh junction density by the Langmuir-Blodgett technique. Adv Mater, 2006, 18: 210–213CrossRef
    25.Patla I, Acharya S, Zeiri L, et al. Synthesis, two-dimensional assembly, and surface pressure-induced coalescence of ultranarrow PbS NWs. Nano Lett, 2007, 7: 1459–1462CrossRef
    26.Kim F, Kwan S, Akana J, Yang PD. Langmuir-Blodgett nanorod assembly. J Am Chem Soc, 2001, 123: 4360–4361CrossRef
    27.Yu GH, Li XL, Lieber CM, Cao AY. Nanomaterial-incorporated blown bubble films for large-area, aligned nanostructures. J Mater Chem, 2008, 18: 728–734CrossRef
    28.Lee M, Im J, Lee BY, et al. Linker-free directed assembly of high-performance integrated devices based on nanotubes and NWs. Nat Nanotechnol, 2006, 1: 66–71CrossRef
    29.Heo K, Cho E, Yang JE, et al. Large-scale assembly of silicon nanowire network-based devices using conventional microfabrication facilities. Nano Lett, 2008, 8: 4523–4527CrossRef
    30.Rao SG, Huang L, Setyawan W, Hong S. Nanotube electronics: large-scale assembly of carbon nanotubes. Nature, 2003, 425: 36–37CrossRef
    31.Fan ZY, Ho JC, Takahashi T, et al. Toward the development of printable nanowire electronics and sensors. Adv Mater, 2009, 21: 3730–3743CrossRef
    32.Fan ZY, Ho JC, Jacobson ZA, et al. Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing. Nano Lett, 2008, 8: 20–25CrossRef
    33.Yao J, Yan H, Lieber CM. A nanoscale combing technique for the large-scale assembly of highly aligned NWs. Nat Nanotechnol, 2013, 8: 329–335CrossRef
    34.Yerushalmi R, Jacobson ZA, Ho JC, Fan ZY, Javey A. Large scale, highly ordered assembly of nanowire parallel arrays by differential roll printing. Appl Phys Lett, 2007, 91: 203104CrossRef
    35.Chen G, Liu Z, Liang B, et al. Single-crystalline p-type Zn3As2 NWs for field-effect transistors and visible-light photodetectors on rigid and flexible substrates. Adv Funct Mater, 2013, 23: 2681–2690CrossRef
    36.Chen G, Liang B, Liu Z, et al. High performance rigid and flexible visible-light photodetectors based on aligned X(In, Ga)P nanowire arrays. J Mater Chem C, 2014, 2: 1270–1277CrossRef
    37.Fan ZY, Ho JC, Takahashi T, et al. Toward the development of printable nanowire electronics and sensors. Adv Mater, 2009, 21: 3730–3743CrossRef
    38.Fan ZY, Ho JC, Jacobson ZA, et al. Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing. Nano Lett, 2008, 8: 20–25CrossRef
    39.Lau PH, Takei K, Wang C, et al. Fully printed, high performance carbon nanotube thin-film transistors on flexible substrates. Nano Lett, 2013, 13: 3864–3869CrossRef
    40.Dong LF, Bush J, Chirayos V, Solanki R, Jiao J. Dielectrophoreticall y controlled fabrication of single-crystal nickel silicide nanowire interconnects. Nano Lett, 2005, 5: 2112–2115CrossRef
    41.Salem AK, Chao J, Leong KW, Searson PC. Receptor-mediated self-assembly of multi-component magnetic NWs. Adv Mater, 16: 268-271
    42.Lee CH, Kim DR, Zheng XL. Orientation-controlled alignment of axially modulated pn silicon NWs. Nano Lett, 2010, 10: 5116–5122CrossRef
    43.Islam MS, Sharma S, Kamins TI, Williams RS. Ultrahigh-density silicon nanobridges formed between two vertical silicon surfaces. Nanotechnology, 2004, 15: L5–L8CrossRef
    44.Li YB, Paulsen A, Yamada I, Koide Y, Delaunay JJ. Bascule nanobridges self-assembled with ZnO NWs as double Schottky barrier UV switches. Nanotechnology, 2010, 21: 295502CrossRef
    45.Fortuna SA, Wen JG, Chun IS, Li XL. Planar GaAs NWs on GaAs (100) substrates: self-aligned, nearly twin-defect free, and transfer-printable. Nano Lett, 2008, 8: 4421–4427CrossRef
    46.Tsivion D, Schvartzman M, Biro RP, Joselevich E. Guided growth of horizontal ZnO NWs with controlled orientations on flat and faceted sapphire surfaces. ACS Nano, 2012, 6: 6433–6445CrossRef
    47.Pevzner A, Engel Y, Elnathan R, et al. Confinement-guided shaping of semiconductor NWs and nanoribbons: “writing with NWs”. Nano Lett, 2012, 12: 7–12CrossRef
    48.Yu LW, Xu MK, Xu J, et al. In-plane epitaxial growth of silicon NWs and junction formation on Si(100) substrates. Nano Lett, 2014, 14: 6469–6474CrossRef
    49.Bhardwaj N, Kundu SC. Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv, 2010, 28: 325–347CrossRef
    50.Loscertales IG, Barrero A, Guerrero I, et al. Micro/nano encapsulation via electrified coaxial liquid jets. Science, 2002, 295: 1695–1698CrossRef
    51.Li D, Wang YL, Xia YN. Electrospinning nanofibers as uniaxially aligned arrays and layer-by layer stacked films, Adv Mater, 2004, 16: 361–366CrossRef
    52.Xie J, Liu W, Mac Ewan MR, Bridgman PC, Xia Y. Neurite outgrowth on electrospun nanofibers with uniaxial alignment: the effects of fiber density, surface coating, and supporting substrate. ACS Nano, 2014, 8: 1878–1885CrossRef
    53.Wu H, Sun Y, Lin DD, et al. GaN nanofibers based on electrospinning: facile synthesis, controlled assembly, precise doping, and application as high performance UV photodetector. Adv Mater, 2009, 21: 227–231CrossRef
    54.Katta P, Alessandro M, Ramsier RD, Chase GG. Continuous electrospinning of aligned polymer nanofibers onto a wire drum collector. Nano Lett, 2004, 4: 2215–2218CrossRef
    55.Matthews JA, Wnek GE, Simpson DG, Bowlin GL. Electrospinning of collagen nanofibers. Biomacromolecules, 2002, 3: 232–238CrossRef
    56.Pan H, Li L, Hu L, Cui XJ. Continuous aligned polymer fibers produced by a modified electrospinning method. Polymer, 2006, 47: 4901–4904CrossRef
    57.Li D, Xia YN. Direct fabrication of composite and ceramic hollow nanofibers by electrospinning. Nano Lett, 2004, 4: 933–938CrossRef
    58.Choi SH, Ankonina G, Youn DY, et al. Hollow ZnO nanofibers fabricated using electrospun polymer templates and their electronic transport properties. ACS Nano, 2009, 3: 2623–2631CrossRef
    59.Yang DY, Lu B, Zhao Y, Jiang X. Fabrication of aligned fibrous arrays by magnetic electrospinning. Adv Mater, 2007, 19: 3702–3706CrossRef
    60.Liu YQ, Zhang XP, Xia YN, Yang H. Magnetic-field-assisted electrospinning of aligned straight and wavy polymeric nanofibers. Adv Mater, 2010, 22: 2454–2457CrossRef
    61.Teo WE, Ramakrishna S. A review on electrospinning design and nanofiber assemblies. Nanotechnology, 2006, 17: R89–R106CrossRef
    62.Shim HS, Na SI, Nam SH, et al. Efficient photovoltaic device fashioned of highly aligned multilayers of electrospun TiO2 nanowire array with conjugated polymer. Appl Phys Lett, 2008, 92: 183107CrossRef
    63.Xua CY, Inaic R, Kotaki M, Ramakrishnaa S. Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering. Biomaterials, 2004, 25: 877–886CrossRef
    64.Sundaray B, Subramanian V, Natarajan TS, et al. Electrospinning of continuous aligned polymer fibers. Appl Phys Lett, 2004, 84: 1222–1224CrossRef
    65.Theron A, Zussman E, Yarin AL. Electrostatic field-assisted alignment of electrospun nanofibers. Nanotechnology, 2001, 12: 384–390CrossRef
    66.Ding ZW, Salim A, Ziaie B. Selective nanofiber deposition through field-enhanced electrospinning. Langmuir, 2009, 25: 9648–9652CrossRef
    67.Zhang D, Chang J. Patterning of electrospun fibers using electroconductive templates. Adv Mater, 2007, 19: 3664–3667CrossRef
    68.Badrossamay MR, McIlwee HA, Goss JA, Parker KK. Nanofiber assembly by rotary jet-spinning. Nano Lett, 2010, 10: 2257–2261CrossRef
    69.Li MM, Long YZ, Yang DY, et al. Fabrication of one dimensional superfine polymer fibers by double-spinning. J Mater Chem, 2011, 21: 13159–13162CrossRef
    70.Khamforoush M, Mahjob M. Modification of the rotating jet method to generate highly aligned electrospun nanofibers. Mater Lett, 2011, 65: 453–455CrossRef
    71.Sun DH, Chang C, Li S, Lin LW. Near-field electrospinning. Nano Lett, 2006, 6: 839–842CrossRef
    72.Chang C, Tran VH, Wang JB, Fuh YK, Lin LW. Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett, 2010, 10: 726–731CrossRef
    73.Brown TD, Dalton PD, Hutmacher DW. Direct writing by way of melt electrospinning. Adv Mater, 2011, 23: 5651–5657CrossRef
    74.Bisht GS, Canton G, Mirsepassi A, et al. Controlled continuous patterning of polymeric nanofibers on three-dimensional substrates using low-voltage near-field electrospinning. Nano Lett, 2011, 11: 1831–1837CrossRef
    75.Lin DD, Wu H, Qin XL, Pa n W. Electrical behavior of electrospun heterostructured Ag-ZnO nanofibers. Appl Phys Lett, 2009, 95: 112104CrossRef
    76.Duran P, Capel F, Tartaj J, Moure C. A strategic two-stage low-temperature thermal processing leading to fully dense and fine-grained doped-ZnO varistors. Adv Mater, 2002, 14: 137–141CrossRef
    77.Pham MTN, Boukamp BA, Bouwmeester HJM, Blank DHA. Microstructural and electrical properties of nanocomposite PZT/Pt thin films made by pulsed laser deposition. Ceram Int, 2004, 30: 1499–1503CrossRef
    78.Li RJ, Hu WP, Liu YQ, Zhu D. Micro-and nanocrystals of organic semiconductors. Accounts Chem Res, 2010, 43: 529–540CrossRef
    79.Dong HL, Zhu HF, Meng Q, Gong X, Hu W. Organic photoresponse materials and devices. Chem Soc Rev, 2012, 41: 1754–1808CrossRef
    80.Brisenoa AL, Mannsfeldb SCB, Jenekhea SA, Baob Z, Xia YN. Introducing organic nanowire transistors. Mater today, 2008, 11: 38–47CrossRef
    81.Qiu LZ, Lee WH, Wang XH, et al. Organic thin-film transistors based on polythiophene NWs embedded in insulating polymer. Adv Mater, 2009, 21: 1349–1353CrossRef
    82.Min SY, Kim TS, Kim BJ, et al. Large-scale organic nanowire lithography and electronics. Nat Commun, 2013, 4: 1773CrossRef
    83.Liu SH, Tok JBH, Bao ZN. Nanowire lithography: fabricating controllable electrode gaps using Au-Ag-Au NWs. Nano Lett, 2005, 5: 1071–1076CrossRef
    84.Jin S, Whang D, McAlpine MC, et al. Scalable interconnection and integration of nanowire devices without registration. Nano Lett, 2004, 4: 915–919CrossRef
    85.Liu YX, Gao CT, Pan XJ, et al. Synthesis and H2 sensing properties of aligned ZnO nanotubes. Appl Surf Sci, 2011, 257: 2264–2268CrossRef
    86.Wang ZL, Song JH. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 2006, 312: 242–246CrossRef
    87.Sun CL, Shi J, Bayerl DJ, et al. PVDF microbelts for harvesting energy from respiration. Energy Environ Sci, 2011, 4: 4508–4512CrossRef
    88.Kumar B, Kim SW. Recent advances in power generation through piezoelectric nanogenerators. J Mater Chem, 2011, 21: 18946–18958CrossRef
    89.Chang C, Tran VH, Wang JB, Fuh YK, Lin L. Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett, 2010, 10: 726–731CrossRef
    90.Chen X, Xu SY, Yao N, Shi Y. 1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. Nano Lett, 2010, 10: 2133–2137CrossRef
    91.Persano L, Dagdeviren C, Su YW, et al. High performance piezoelectric devices based on aligned arrays of nanofibers of poly (vinylidenefluoride-co-trifluoroethylene). Nat Commun, 2013, 4:1633CrossRef
    92.Chen X, Xu SY, Yao N, Xu W, Shi Y. Potential measurement from a single lead ziroconate titanate nanofiber using a nanomanipulator. Appl Phys Lett, 2009, 94: 253113CrossRef
    93.Zhang Y, Liu Y, Wang ZL. Fundamental theory of piezotronics. Adv Mater, 2011, 23: 3004–3013CrossRef
    94.Xu SY, Shi Y, Kim SG. Fabrication and mechanical property of nano piezoelectric fibres. Nanotechnology, 2006, 17: 4497–4501CrossRef
    95.Chang J, Lin L. Large array electrospun PVDF nanogenerators on a flexible substrate. Proceedings of the 16th International Solid-State Sensors, Actuators and Microsystems Conference. IEEE, 2011, 747–750
    96.Xin Y, Huang ZH, Peng L, Wang DJ. Photoelectric performance of poly(p-phenylene vinylene)/Fe3O4 nanofiber array. J Appl Phys, 2009, 105: 086106CrossRef
    97.Heo K, Lee H, Park Y, et al. Ligned networks of cadmium sulfide NWs for highly flexible photodetectors with improved photoconductive responses. J Mater Chem, 2012, 22: 2173CrossRef
    98.Singh A, Li XY, Protasenko V, et al. Polarization-sensitive nanowire photodetectors based on solution-synthesized CdSe quantum-wire solids. Nano Lett, 2007, 7: 2999–3006CrossRef
    99.Yu YH, Protasenko V, Jena D, Xing H, Kuno M. Photocurrent polarization anisotropy of randomly oriented nanowire networks. Nano Lett, 2008, 8: 1352–1357CrossRef
    100.Wu H, Sun Y, Lin DD, et al. GaN nanofibers based on electrospinning: facile synthesis, controlled assembly, precise doping, and application as high performance UV photodetector. Adv Mater, 2009, 21: 227–231CrossRef
    101.Kim CJ, Lee HS, Cho YJ, Kang K, Jo MH. Diameter-dependent internal gain in ohmic Ge nanowire photodetectors. Nano Lett, 2010, 10: 2043–2048CrossRef
    102.Liu X, Gu LL, Zhang QP, et al. All-printable band-edge modulated ZnO nanowire photodetectors with ultra-high detectivity. Nat Commun, 2014, 5: 4007
    103.Lin CH, Chang SJ, Chen WS, Hsueh TJ. Transparent ZnO-nanowire-based device for UV light detection and ethanol gas sensing on c-Si solar cell. RSC Adv, 2016, 6: 11146CrossRef
    104.Hossain FM, Nishii J, Takagi S, et al. Modeling and simulation of polycrystalline ZnO thin-film transistors. J Appl Phys, 2003, 94: 7768–7777CrossRef
    105.Zheng Z, Gan L, Li HQ, et al. A fully transparent and flexible ultraviolet-visible photodetector based on controlled electrospun ZnOCdO heterojunction nanofiber arrays. Adv Funct Mater, 2015, 25: 5885–5894CrossRef
    106.Tian W, Zhai TY, Zhang C, et al. Low-cost fully transparent ultraviolet photodetectors based on electrospun ZnO-SnO2 heterojunction nanofibers. Adv Mater, 2013, 25: 4625–4630CrossRef
    107.Huang SY, Wu H, Matsubara K, Cheng J, Pan W. Facile assembly of n-SnO2 nanobelts-p-NiO heterojunctions with enhanced ultraviolet photoresponse. Chem Commun, 2014, 50: 2847–2850CrossRef
    108.Huang SY, Wu H, Zhou M, et al. A flexible and transparent ceramic nanobelt network for soft electronics. NPG Asia Mater, 2014, 6: e86CrossRef
    109.Nie R, Wang YY, Deng XY. Aligned nanofibers as an interfacial layer for achieving high detectivity and fast-response organic photodetectors. ACS Appl Mater Interfaces, 2014, 6: 7032–7037CrossRef
    110.Deng MJ, Shen SL, Wang XW, et al. Controlled synthesis of AgInS2 nanocrystals and their application in organic-inorganic hybrid photodetectors. CrystEngComm, 2013, 15: 6443–6447CrossRef
    111.Kind H, Yan HQ, Messer B, Law M, Yang PD. Nanowire ultraviolet photodetectors and optical switches. Adv Mater, 2002, 14: 158–160CrossRef
    112.Hsu CL, Li HH, Hsueh TJ. Water-and humidity-enhanced UV detector by using p-type La-doped ZnO NWs on flexible polyimide substrate. ACS Appl Mater Interfaces, 2013, 5: 11142–11151.CrossRef
    113.Lai CL, Wang XX, Zhao Y, Fong H, Zhu ZT. Effects of humidity on the ultraviolet nanosensors of aligned electrospun ZnO nanofibers. RSC Adv, 2013, 3: 6640–6645CrossRef
    114.Li YB, Valle FD, Simonnet M, Yamada I, Delaunay JJ. Competitive surface effects of oxygen and water on UV photoresponse of ZnO NWs. Appl Phys Lett, 2009, 94: 023110CrossRef
  • 作者单位:Zhi Zheng 郑志 (1)
    Lin Gan 甘霖 (1)
    Tianyou Zhai 翟天佑 (1)

    1. State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
  • 刊物类别:Materials Science, general; Chemistry/Food Science, general;
  • 刊物主题:Materials Science, general; Chemistry/Food Science, general;
  • 出版者:Science China Press
  • ISSN:2199-4501
文摘
Alignment of NWs (NWs) is the core issue for integrating NWs into nanodevices in future. This review made a concise retrospect on reported assembling methods and mainly emphasized on the electrospinning method and its developments, as well as the following applications of the aligned nanowire array (NWA) in electronics and optoelectronics. First, we classified reported assembling methods into three categories: “grow then place”, “place then grow” and “grow and place” (electrospinning method). Then, we focused on the electrospinning method and its modified method including field assisted method, rotating collector assisted method and near-field assisted methods, as well as their merits and defects, respectively. Next, we illustrated the applications of the NWs arrays fabricated by electrospinning in field effect transistors (FET), gas sensors, piezoelectric sensors and photodetectors. Finally, we made a short conclusion and prospection on electrospinning method. As an easy and cheap nanowire fabrication and alignment method, electrospinning has a bright future in one-dimensional materials based electronics and optoelectronics.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700