Susceptibility of never-dried and freeze-dried bacterial cellulose towards esterification with organic acid
详细信息    查看全文
  • 作者:Koon-Yang Lee (1)
    Alexander Bismarck (1) a.bismarck@imperial.ac.uk
  • 关键词:Esterification – ; Organic acids – ; Bacterial cellulose – ; Freeze ; dried state – ; Never ; dried state
  • 刊名:Cellulose
  • 出版年:2012
  • 出版时间:June 2012
  • 年:2012
  • 卷:19
  • 期:3
  • 页码:891-900
  • 全文大小:458.8 KB
  • 参考文献:1. Barud HS, de Araujo AM, Santos DB, de Assuncao RMN, Meireles CS, Cerqueira DA, Rodrigues G, Ribeiro CA, Messaddeq Y, Ribeiro SJL (2008) Thermal behavior of cellulose acetate produced from homogeneous acetylation of bacterial cellulose. Thermochim Acta 471(1–2):61–69
    2. Blaker JJ, Lee KY, Li XX, Menner A, Bismarck A (2009) Renewable nanocomposite polymer foams synthesized from Pickering emulsion templates. Green Chem 11(9):1321–1326. doi:
    3. Blaker JJ, Lee KY, Bismarck A (2011) Hierarchical composites made entirely from renewable resources. J Biobased Mater Bioenergy 5(1):1–16
    4. Brown AJ (1886) The chemical action of pure cultivations of bacterium aceti. J Chem Soc Trans 49:172–187
    5. Colombo EA, Immerguy EH (1970) Interaction of cellulose with organic liquids and vapors. J Polym Sci C Polym Symp 31(1):137–156
    6. Czaja W, Romanovicz D, Brown RM (2004) Structural investigation of microbial cellulose produced in stationary and agitated culture. Cellulose 113–4:403–411
    7. de Menezes AJ, Siqueira G, Curvelo AAS, Dufresne A (2009) Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites. Polymer 50(19):4552–4563
    8. Eichhorn SJ, Davies GR (2006) Modelling the crystalline deformation of native and regenerated cellulose. Cellulose 13(3):291–307
    9. Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45(1):1–33
    10. Freire CSR, Silvestre AJD, Neto CP, Belgacem MN, Gandini A (2006) Controlled heterogeneous modification of cellulose fibers with fatty acids: effect of reaction conditions on the extent of esterification and fiber properties. J Appl Polym Sci 100(2):1093–1102
    11. Gardner DJ, Oporto GS, Mills R, Samir M (2008) Adhesion and surface issues in cellulose and nanocellulose. J Adhes Sci Technol 22(5–6):545–567
    12. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500
    13. Heinze T, Liebert T, Koschella A (2006) Esterification of polysaccharides. Springer, Berlin
    14. Herrick FW, Casebier RL, Hamilton RI, Sandberg KR (1983) Microfibrillated cellulose: morphology and accessibility. J Appl Polym Sci Symp 37:797–813
    15. Horii F, Hirai A, Kitamaru R (1987a) Cp/Mas C-13 NMR-spectra of the crystalline components of native celluloses. Macromolecules 20(9):2117–2120
    16. Horii F, Yamamoto H, Kitamaru R, Tanahashi M, Higuchi T (1987b) Transformation of native cellulose crystals induced by saturated steam at high-temperatures. Macromolecules 20(11):2946–2949
    17. Hsieh YC, Yano H, Nogi M, Eichhorn SJ (2008) An estimation of the young’s modulus of bacterial cellulose filaments. Cellulose 15(4):507–513
    18. Ifuku S, Nogi M, Abe K, Handa K, Nakatsubo F, Yano H (2007) Surface modification of bacterial cellulose nanofibers for property enhancement of optically transparent composites: dependence on acetyl-group DS. Biomacromolecules 8(6):1973–1978. doi:
    19. Ilharco LM, Garcia AR, daSilva JL, Ferreira LFV (1997) Infrared approach to the study of adsorption on cellulose: influence of cellulose crystallinity on the adsorption of benzophenone. Langmuir 13(15):4126–4132
    20. Ishida O, Kim DY, Kuga S, Nishiyama Y, Brown RM (2004) Microfibrillar carbon from native cellulose. Cellulose 11(3–4):475–480. doi:
    21. Jin H, Nishiyama Y, Wada M, Kuga S (2004) Nanofibrillar cellulose aerogels. Colloids Surf A Physicochem Eng Asp 240(1–3):63–67. doi:
    22. Kim DY, Nishiyama Y, Kuga S (2002) Surface acetylation of bacterial cellulose. Cellulose 9(3–4):361–367. doi:
    23. Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44(22):3358–3393
    24. Klemm D, Schumann D, Kramer F, Hessler N, Koth D, Sultanova B (2009) Nanocellulose materials—different cellulose, different functionality. Macromol Symp 280:60–71
    25. Kuga S, Kim DY, Nishiyama Y, Brown RM (2002) Nanofibrillar carbon from native cellulose. Mol Cryst Liq Cryst 387:237–243. doi:10.1080/10587250290113510
    26. Lee KY, Blaker JJ, Bismarck A (2009) Surface functionalisation of bacterial cellulose as the route to produce green polylactide nanocomposites with improved properties. Compos Sci Technol 69(15–16):2724–2733
    27. Lee K-Y, Quero F, Blaker JJ, Hill CAS, Eichhorn SJ, Bismarck A (2011) Surface only modification of bacterial cellulose nanofibres with organic acids. Cellulose 18(3):595–605
    28. Ly EH, Bras J, Sadocco P, Belgacem MN, Dufresne A, Thielemans W (2010) Surface functionalization of cellulose by grafting oligoether chains. Mater Chem Phys 120(2–3):438–445
    29. Merchant MV (1957) A study of certain phenomena of the liquid exchange of water-swollen cellulose fibers and their subsequent drying from hydrocarbons. Lawrence College, Appleton
    30. Pommet M, Juntaro J, Heng JYY, Mantalaris A, Lee AF, Wilson K, Kalinka G, Shaffer MSP, Bismarck A (2008) Surface modification of natural fibers using bacteria: depositing bacterial cellulose onto natural fibers to create hierarchical fiber reinforced nanocomposites. Biomacromolecules 9(6):1643–1651
    31. Reiling S, Brickmann J (1995) Theoretical investigations on the structure and physical-properties of cellulose. Macromol Theory Simul 4(4):725–743
    32. Sassi JF, Chanzy H (1995) Ultrastructural aspects of the acetylation of cellulose. Cellulose 2(2):111–127
    33. Sassi JF, Tekely P, Chanzy H (2000) Relative susceptibility of the I-alpha and I-beta phases of cellulose towards acetylation. Cellulose 7(2):119–132
    34. Sczostak A (2009) Cotton linters: an alternative cellulosic raw material. Macromol Symp 280:45–53
    35. Segal L, Creely JJ, Martin-Jr AE, Conrad CM (1959) An emperical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794
    36. Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494. doi:
    37. Spinu M, Dos Santos N, Le Moigne N, Navard P (2011) How does the never-dried state influence the swelling and dissolution of cellulose fibres in aqueous solvent? Cellulose 18(2):247–256
    38. Sugiyama J, Vuong R, Chanzy H (1991) Electron-diffraction study on the 2 crystalline phases occurring in native cellulose from an algal cell-wall. Macromolecules 24(14):4168–4175
    39. Tingaut P, Zimmermann T, Lopez-Suevos F (2010) Synthesis and characterization of bionanocomposites with tunable properties from poly(lactic acid) and acetylated microfibrillated cellulose. Biomacromolecules 11(2):454–464. doi:
    40. Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: Properties, uses and commercial potential. J Appl Polym Sci: Appl Polym Symp 37:459–494
    41. Vanderhart DL, Atalla RH (1984) Studies of microstructure in native celluloses using solid-state C-13 NMR. Macromolecules 17(8):1465–1472. doi:
    42. Venkateswaran A, Riemen WP (1965) Experiments on the effect of ethylamine treatment on the crystallnity of cellulose. J Appl Polym Sci 9(3):1139–1148
    43. Wada M, Okano T, Sugiyama J (2001) Allomorphs of native crystalline cellulose I evaluated by two equatorial d-spacings. J Wood Sci 47(2):124–128
    44. Yin CY, Li JB, Xu Q, Peng Q, Liu YB, Shen XY (2007) Chemical modification of cotton cellulose in supercritical carbon dioxide: Synthesis and characterization of cellulose carbamate. Carbohydr Polym 67(2):147–154. doi:
  • 作者单位:1. Polymer and Composites Engineering (PaCE) Group, Department of Chemical Engineering, Imperial College London, South Kensington Campus, SW7 2AZ London, UK
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Bioorganic Chemistry
    Physical Chemistry
    Organic Chemistry
    Polymer Sciences
  • 出版者:Springer Netherlands
  • ISSN:1572-882X
文摘
The susceptibility of (1) never-dried and (2) freeze-dried bacterial cellulose (BC) towards organic acid esterification is reported in this work. When never-dried BC (BC which was solvent exchanged from water through methanol into pyridine) was modified with hexanoic acid, it was found that the degree of substitution (DS) was significantly lower than that of hexanoic acid modified freeze-dried BC. The crystallinity of freeze-dried BC hexanoate was found to be significantly lower compared to neat BC and never-dried BC hexanoate. This result, along with the high DS indicates that significant bulk modification occurred during the esterification of freeze-dried BC. Such results were not observed for never-dried BC hexanoate. All these evidence point towards to fact that freeze-dried BC was more susceptible to organic acid esterification compared to never-dried BC. A few hypotheses were explored to explain the observed behaviour and further investigated to elucidate our observation; the effect of residual water in cellulose, the accessibility of hydroxyl groups and the crystal structure of never-dried and freeze-dried BC on the susceptibility of cellulose fibrils to esterification, respectively. However, the investigation of these hypotheses raised more questions and we are still left with the main question; why do BC nanofibres behave differently when modifying freeze-dried BC or never-dried BC?

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700