Comparative study: the effect of annealing conditions on the properties of P3HT:PCBM blends
详细信息    查看全文
  • 作者:David E. Motaung (1)
    Gerald F. Malgas (1)
    Steven S. Nkosi (1)
    Gugu H. Mhlongo (1)
    Bonex W. Mwakikunga (1)
    Thomas Malwela (1)
    Christopher J. Arendse (2)
    Theophillus F. G. Muller (2)
    Franscious R. Cummings (3)
  • 刊名:Journal of Materials Science
  • 出版年:2013
  • 出版时间:February 2013
  • 年:2013
  • 卷:48
  • 期:4
  • 页码:1763-1778
  • 全文大小:1838KB
  • 参考文献:1. Lungenschmied C, Dennler G, Neugebauer H, Sariciftci NS, Glatthaar M, Meyer T, Meyer A (2007) Sol Energy Mater Sol Cells 91:379 CrossRef
    2. Tipnis R, Bernkopf J, Jia S, Krieg J, Li S, Storch M, Laird D (2009) Sol Energy Mater Sol Cells 93:442 CrossRef
    3. Blankenburg L, Schultheis K, Schache H, Sensfuss S, Schr?dner M (2009) Sol Energy Mater Sol Cells 93:476 CrossRef
    4. Krebs FC, J?rgensen M, Norrman K, Hagemann O, Alstrup J, Nielsen TD, Fyenbo J, Larsen K, Kristensen J (2009) Sol Energy Mater Sol Cells 93:422 CrossRef
    5. Ma W, Yang C, Gong X, Lee K, Heeger AJ (2005) Adv Funct Mater 151:617
    6. A?ch BR et al (2012) Org Electron. http://dx.doi.org/10.1016/j.orgel.2012.05.001
    7. Konarka Technologies home page. http://www.konarka.com/index.php/site/pressreleasedetail/konarkas_power_plastic_achieves_world_record_83_efficiency_certification_fr. Accessed 16 June 12
    8. Mitsubishi Chemical Corporation Homepage. http://www.mitsubishichemhd.co.jp/english/news_release/index.html. Accessed 16 June 2012
    9. Krebs FC (2008) Sol Energy Mater Sol Cells 92:715 CrossRef
    10. Krebs FC, Nielsen TD, Fyenbo J, Wadstr?m M, Pedersen MS (2010) Energy Environ Sci 3:512 CrossRef
    11. Krebs FC, Fyenbo J, J?rgensen M (2010) J Mater Chem 20:8994 CrossRef
    12. Hoppe H, Sariciftci NS (2006) J Mater Chem 16:45 CrossRef
    13. Padinger F, Rittberger RS, Sariciftci NS (2003) Adv Funct Mater 13:85 CrossRef
    14. Ma W, Yang C, Heeger AJ (2007) Adv Mater 19:1387 CrossRef
    15. Motaung DE, Malgas GF, Arendse CJ (2011) J Mater Sci 46:4942. doi:10.1007/s10853-011-5408-9 CrossRef
    16. Jeon JH, Lee HK, Wang DH, Park JH, Park OO (2012) Sol Energy Mater Sol Cells 102:196 CrossRef
    17. Shen Y-M, Chen C-S, Yang P-C, Ma S-Y, Lin C-F (2012) Sol Energy Mater Sol Cells 99:263 CrossRef
    18. Peet J, Soci C, Coffin RC, Nguyen TQ, Mikhailovsky A, Moses D, Bazan GC (2006) Appl Phys Lett 89:252105 CrossRef
    19. Chen F-C, Tseng H-C, Ko C-J (2008) Appl Phys Lett 92:103316 CrossRef
    20. Lee JK, Ma WL, Brabec CJ, Yuen J, Moon JS, Kim JY, Lee K, Bazan GC, Heeger AJ (2008) J Am Chem Soc 130:3619 CrossRef
    21. Moulé AJ, Meerholz K (2008) Adv Mater 20:240 CrossRef
    22. Motaung DE, Malgas GF, Arendse CJ (2010) Synth Met 160:876 CrossRef
    23. Reisdorffer F, Haas O, Le Rendu P, Nguyen TP (2012) Synth Met 161:2544 CrossRef
    24. Li G, Shrotriya V, Yao Y, Huang J, Yang Y (2007) J Mater Chem 17:3126 CrossRef
    25. Cugola R, Giovanella U, DiGianvincenzo P, Bertini F, Catellani M, Luzzati S (2006) Thin Solid Films 511-12:489 CrossRef
    26. Madsen MV, Sylvester-Hvid KO, Dastmalchi B, Hingerl K, Norrman K, Tromholt T, Manceau M, Angmo D, Krebs FC (2011) J Phys Chem C 115:10817 CrossRef
    27. Woollam JA (2008) Inc. Complete Ease?Data Analysis Manual
    28. Jellison GE (1993) Thin Solid Films 234:416 CrossRef
    29. Erb T, Zhokhavets U, Gobsch G, Raleva S, Stühn B, Schilinsky P, Waldauf C, Brabec CJ (2005) Adv Funct Mater 15:1193 CrossRef
    30. Chirvase D, Parisi J, Hummelen JC, Dyakonov V (2004) Nanotechnology 15:1317 CrossRef
    31. Cullity D (1956) Elements of X-ray diffraction. Addison-Wesley, Reading
    32. Malgas GF, Motaung DE, Arendse CJ (2012) J Mater Sci 47:4282. doi:10.1007/s10853-012-6278-5 CrossRef
    33. Swinnen A, Haeldermans I, vande Ven M, D’Haen J, Vanhoyland G, Aresu S, D’Olieslaeger M, Manca J (2006) Adv Funct Mater 16:760 CrossRef
    34. Bull TA, Pingree LSC, Jenekhe SA, Ginger DS, Luscombe CK (2009) ACS Nano 3:627 CrossRef
    35. Singh RK, Kumara J, Singh R, Kant R, Chand S, Kumar V (2007) Mater Chem Phys 104:390 CrossRef
    36. Motaung DE, Malgas GF, Arendse CJ, Malwela T (2010) Mater Chem Phys 124:208 CrossRef
    37. Campoy-Quiles M, Ferenczi T, Agostinelli T, Etchegoin PG, Kim Y, Anthopoulos TD, Stavrinou PN, Bradley DDC, Nelson J (2008) Nat Mater 7:158 CrossRef
    38. Chang L, Lademann HWA, Bonekamp J-B, Meerholz K, Moulé AJ (2011) Adv Funct Mat 21:1779 CrossRef
    39. Erb T, Zhokhavets U, Hoppe H, Gobsch G, Al-Ibrahim M, Ambacher O (2006) Thin Solid Films 511-12:483 CrossRef
    40. Bj?rstr?m CM, Nilsson S, Bernasik A, Budkowski A, Andersson M, Magnusson KO, Moons E (2007) Appl Surf Sci 253:3906 CrossRef
    41. Wang X, Ederth T, Inganas O (2006) Langmuir 22:9287 CrossRef
    42. Kim Y, Cook S, Tuladhar SM, Choulis SA, Nelson J, Durrant JR, Bradley DDC, Giles M, McCulloch I, Ha C-S, Lee M (2006) Nat Mater 5:197 CrossRef
    43. Harris DC, Bertolucci MD (1978) Symmetry and spectroscopy. Oxford University Press, New York
    44. Motaung DE, Malgas GF, Arendse CJ, Mavundla SE (2012) Mater Chem Phys 135:401 CrossRef
    45. Lioudakis E, Othonos A, Alexandrou I, Hayashi Y (2007) Appl Phys Lett 91:111117 CrossRef
    46. Karagiannidis PG, Georgiou D, Pitsalidis C, Laskarakis A, Logothetidis S (2011) Mater Chem Phys 129:1207 CrossRef
    47. Motaung DE, Malgas GF, Arendse CJ (2010) J Mater Sci 45:3276. doi:10.1007/s10853-010-4339-1 CrossRef
    48. Bagienski W, Gupta MC (2011) Sol Energy Mater Sol Cells 95:933 CrossRef
    49. Motaung DE, Malgas GF, Arendse CJ, Mavundla SE, Knoesen D, Oliphant CJ (2009) Sol Energy Mater Sol Cells 93:1674 CrossRef
    50. Zhang F, Zhuo Z, Zhang J, Wang X, Xu X, Wang Z, Xin Y, Wang J, Wang J, Tang W, Xu Z, Wang Y (2012) Sol Energy Mater Sol Cells 97:71 CrossRef
    51. Motaung DE, Malgas GF, Arendse CJ, Mavundla SE, Knoesen D (2009) Mater Chem Phys 116:279 CrossRef
    52. Wang T-L, Yeh A-C, Yang C-H, Shieh Y-T, Chen W-J, Ho T-H (2011) Sol Energy Mater Sol Cells 95:3295 CrossRef
    53. Parlak EA (2012) Sol Energy Mater Sol Cells 100:174 CrossRef
    54. Ho C-S, Huang E-L, Hsu W-C, Lee C-S, Lai Y-N, Yao E-P, Wang C-W (2012) Synth Met 162:1164 CrossRef
  • 作者单位:David E. Motaung (1)
    Gerald F. Malgas (1)
    Steven S. Nkosi (1)
    Gugu H. Mhlongo (1)
    Bonex W. Mwakikunga (1)
    Thomas Malwela (1)
    Christopher J. Arendse (2)
    Theophillus F. G. Muller (2)
    Franscious R. Cummings (3)

    1. DST/CSIR Nanotechnology Innovation Centre, National Centre for Nano-Structured Materials, Council for Scientific and Industrial Research, P. O. Box 395, Pretoria, 0001, South Africa
    2. Department of Physics, University of the Western Cape, Private Bag X17, Bellville, 7535, South Africa
    3. Electron Microscope Unit, University of Cape Town, Rondebosch, 7701, South Africa
  • ISSN:1573-4803
文摘
This paper presents a detailed study on the role of various annealing treatments on organic poly(3-hexylthiophene) and [6]-phenyl-C61-butyric acid methyl ester blends under different experimental conditions. A combination of analytical tools is used to study the alteration of the phase separation, structure and photovoltaic properties of the P3HT:PCBM blend during the annealing process. Results showed that the thermal annealing yields PCBM “needle-like-crystals and that prolonged heat treatment leads to extensive phase separation, as demonstrated by the growth in the size and quantity of PCBM crystals. The substrate annealing method demonstrated an optimal morphology by eradicating and suppressing the formation of fullerene clusters across the film, resulting in longer P3HT fibrils with smaller diameter. Improved optical constants, PL quenching and a decrease in the P3HT optical bad-gap were demonstrated for the substrate annealed films due to the limited diffusion of the PCBM molecules. An effective strategy for determining an optimized morphology through substrate annealing treatment is therefore revealed for improved device efficiency.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700